Electrochemistry to study reaction mechanisms

somdn_product_page

(Downloads - 0)

Catégorie :

For more info about our services contact : help@bestpfe.com

Table of contents

ABBREVIATIONS
GENERAL INTRODUCTION
CHAPTER I – MECHANISTIC STUDIES TOWARD GREENER PROCESSES: CHALLENGES AND TOOLS
1.What is a chemical mechanism?
2.Experimental techniques for mechanistic investigation
2.1. Kinetics and reactivity
2.2. Electrochemistry
2.3. Nuclear Magnetic Resonance spectroscopy of heteronuclei
2.4. Electron Paramagnetic Resonnance (EPR) spectroscopy
3.Theoretical Tools
3.1. Theoritical foundations
3.2. The Born-Oppenheimer approximation and nuclear energy
3.3. Electronic energy and Slater approximation
3.4. How to evaluate the electronic energy?
3.5. The Density Functional Theory (DFT)
3.6. Choice of the basis set and functional
3.7. Empirical dispersion corrections
3.8. Modelization of solvent effects
3.9. Calculation of thermodynamic parameters
3.10. Charge and bond analyses
3.11. Indicators of chemical reactivity: electronegativity, global and local hardness, Fukui functions and global electrophilicity index
3.12. Conclusion
CHAPTER II – BORON-TO-TRANSITION-METALS TRANSMETALLATION: MECHANISTIC STUDIES
1.Context of the Study
1.1. Transition-metal catalyzed coupling reactions
1.2. Generalities on the mechanism of the Suzuki-Miyaura crosscoupling reaction
1.3. The Palladium-to-Boron Transmetallation Step
2.Transmetallation from Boron to Nickel
2.1. Previous works
2.2. Choice of the model reaction
2.3. Formation of hydroxo-bridged dinuclear complexes
2.4. Decomposition of the complex with excess base
2.5. Interaction of PhB(OH)3– with complex 1
2.6. Effect of the OH–/PhB(OH)2 ratio on the kinetics of TM and RE
2.7. Influence of Br– and PPh3 on the rate of TM and RE
2.8. Mechanism of the TM step
2.9. Mechanism of the RE step
2.10. Electronic Effects of TM
2.11. Effects of the conter-ion
2.12. Effects of the nature of the halide and of the phosphine
2.13. Conclusions
CHAPTER III – LEWIS ACID AND REDOX CATALYTIC PROPERTIES OF TRIFLATE AND TRIFLIMIDE SALTS
1.Triflate and triflimide salts in catalysis
1.1. Lewis acidity: definition and quantification
1.2. Triflate and triflimide salts: history, preparation and charaterization
1.3. Application of triflate and triflimides in synthesis
2.Mechanistic study of a model reaction: Al(OTf)3-catalyzed amination of alcohol
2.1. Description of the model reaction and solvent effects
2.2. Nature of Al(OTf)3 in nitromethane and coordination of BnOH
2.3. Deactivation of Al(OTf)3 by aniline in nitromethane
2.4. Competition between BnOH and aniline for Al in toluene .
2.5. Validation of the DFT methodology
2.6. Determination of the structure of the catalyst by DFT calculations
2.7. Amination Mechanism
2.8. Conclusions
3.Rational design of Lewis acids for the direct amination of alcohols
3.1. Experimental trends for amination within a series of Lewis acids
3.2. Experimental descriptors of Lewis acidity
3.3. Structures of metal triflate and triflimides salts
3.4. Theoretical descriptors of Lewis acidity
3.5. Fukui functions and local hardness
3.6. “In silico Child’s method”
3.7. Synthesis and characterization of titanium triflimide
3.8. Catalytic activity of 4
3.9. Mechanistic insights
3.10. Conclusions
4.Iron triflate salts for oxidation of cyclohexane
4.1. Industrial synthesis of cyclohexanone and cyclohexol
4.2. Iron catalyzed oxidation
4.3. Cyclohexane oxidation using TBHP as oxidizing agent
4.4. EPR investigation
GENERAL CONCLUSIONS AND PERSPECTIVES
EXPERIMENTAL SECTION

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *