(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
Chapter 1. Bibliography and state-of-the-art
1.1 Introduction
1.2 Silicon nanocrystals
1.2.1 Quantum confinement of the exciton in silicon nanostructures
1.2.2 Elaboration techniques for luminescent silicon nanostructures
1.3 Microcavities
1.3.1 Principle
1.3.2 Free space spontaneous emission
1.3.3 Modification of the electromagnetic field by a cavity
1.3.4 Modification of the spontaneous emission rate
1.3.5 Cavity geometries
1.4 Summary & structure of this work
Chapter 2. Experimental & Theoretical Techniques
2.1 Introduction
2.2 Evaporator
2.3 Thermal annealing
2.4 UV-visible-NIR absorption spectrophotometry
2.4.1 Experimental
2.4.2 Principle of the direct simulation method
2.4.3 Swanepoel’s method of envelopes
2.4.4 Principle of the transfer matrix simulation method
2.5 Glancing incidence x-ray reflectivity
2.6 Transmission electron microscopy
2.6.1 Principe of the transmission electron microscopy
2.6.2 Preparation techniques
2.6.3 Electron energy loss spectroscopy
2.6.4 Energy filtered transmission electron microscopy
2.7 Infrared absorption spectroscopy
2.7.1 Principle
2.7.2 Vibrational spectrum in oxygen-rich amorphous silicon
2.7.3 Vibrational characteristics in a- SiO2
2.7.4 Analysis of the stoichiometry
2.8 Raman spectroscopy
2.8.1 Working principle & fundamental notes
2.8.2 Density of vibrational states in silicon
2.8.3 Raman effect in silicon nanocrystals
2.8.4 Discussion on the interpretation of the vibration at 480 cm-1
2.8.5 Raman scattering experiments
2.9 Photoluminescence
2.9.1 Continuous photoluminescence setup – general photoluminescence measurements
2.9.2 Time-resolved photoluminescence setup – lifetime measurements
Chapter 3. Analysis of the silicon nanocrystals
3.1 Introduction
3.2 Preliminary investigations on SiOx thin films
3.2.1 Infrared absorption spectroscopy
3.2.2 Photoluminescence spectroscopy of SiO and SiO1.5 thin films
3.2.3 Photoluminescence and Raman modelization of the experimental spectra
3.3 Formation of the silicon nanocrystals in the SiOx/SiO2 multilayers by RTA annealing
3.3.1 Photoluminescence and Raman models for multilayered samples
3.3.2 EFTEM analysis
3.3.3 Photoluminescence
3.4 Application of lithographic techniques to further reduce the surface density
3.5 Conclusion
Chapter 4. Study of silicon nanocrystals inserted in microcavities
4.1 Introduction
4.2 Choice of the materials for the distributed Bragg reflector
4.3 Optical properties of the Si and SiO2 thin films
4.3.1 Experimental procedure
4.3.2 Properties of the silicon layer
4.3.3 SiO2 layer
4.3.4 Active SiO/SiO2 layer
4.4 Distributed Bragg reflectors
4.4.1 Influence of the number of dielectric pairs
4.4.2 Influence of the annealing temperature
4.4.3 Importance of the layer thickness
4.5 Microcavities
4.5.1 Influence of the number of dielectric pairs in the Bragg mirrors
4.5.2 Fabrication of the cavities and study of their thermal stability
4.5.3 Importance of a constant layer thickness
4.5.4 Influence of the thermal annealing on the transmittance spectra of the cavity
4.5.5 Influence of the thickness of the active layer
4.6 Photoluminescence
4.6.1 Choice of the excitation wavelength
4.6.2 Microcavity with distributed Bragg reflector containing two Si/SiO2 bilayers
4.6.3 Microcavities with distributed Bragg reflectors containing three Si/SiO2 bilayers
4.6.4 Time resolved spectroscopy
4.6.5 Cavity based single dot spectroscopy
4.7 Conclusion
General Conclusion
Bibliography




