Energy efficiency : State of the art

somdn_product_page

(Downloads - 0)

For more info about our services contact : help@bestpfe.com

Table of contents

LIST OF FIGURES
LIST OF TABLES
1 Introduction
1.1 Motivation
1.1.1 Specificities of wireless ad hoc and sensor networks
1.1.2 Differences between wireless ad hoc and sensor networks
1.2 Problem Statement
1.3 Contributions
1.4 Thesis organization
2 Energy efficiency: State of the art
2.1 Introduction
2.2 Definition of network lifetime
2.3 Energy consumption model
2.4 Energy consumption in wireless networks
2.4.1 Energy states
2.4.2 Reasons of energy consumption in the network
2.5 Classification of energy efficient techniques
2.5.1 Energy efficient routing
2.5.2 Node activity scheduling
2.5.3 Topology control by tuning node transmission power
2.5.4 Reduce the amount of information transferred
2.6 Cross layering optimization
2.7 Analysis of node energy consumption distribution
2.8 Discussion
2.9 Conclusion
3 Energy efficient routing
3.1 Introduction
3.2 Related work
3.2.1 Multipath routing protocols
3.2.2 Adaptive hop-by-hop routing protocols
3.3 EOLSR: Energy efficient extension of OLSR
3.3.1 OLSR functioning overview
3.3.2 Why OLSR is not energy efficient?
3.3.3 Principles of EOLSR
3.3.4 Energy consumption model
3.3.5 Energy efficient selection of MPRs
3.3.6 Routing algorithm for EOLSR
3.3.7 Optimized broadcasts
3.3.8 EOLSR design
3.4 Performance evaluation of EOLSR
3.4.1 Comparison of EOLSR with MinEnergy and MaxPacket
3.4.2 Comparative performance evaluation of EOLSR with multipath routing strategies
3.4.3 Energy consumption distribution
3.5 EOLSR for data gathering applications
3.5.1 Maintaining routes only to strategic nodes
3.5.2 Applicability of this optimization
3.6 Conclusion
4 Node activity scheduling
4.1 Introduction
4.2 Graph coloring: state of the art
4.2.1 Vertex coloring
4.2.2 Edge coloring
4.2.3 Graph coloring applied to wireless sensor networks
4.3 SERENA: Scheduling Router Node Activity
4.3.1 Two hop coloring algorithm
4.3.2 Slot assignment algorithm
4.3.3 Message exchanged and information maintained in SERENA
4.3.4 Performance evaluation of SERENA
4.3.5 Comparison with TDMA and USAP
4.4 SERENA in a real wireless network environment
4.4.1 Support of immediate acknowledgement: Extension to three-hop coloring algorithm
4.4.2 Coloring algorithm with unidirectional links
4.5 Color conflict detection and resolution
4.5.1 Causes of a color conflict
4.5.2 Principles of detection and resolution of color conflict
4.6 Synchronization
4.7 Conclusion
5 Node activity scheduling for data gathering applications
5.1 Motivations
5.2 SERENA adaptation to data gathering applications
5.2.1 Principle
5.2.2 Messages exchanged Information maintained by each node
5.2.3 Algorithm
5.2.4 Computation of the number of colors
5.2.5 Comparison with another tree coloring algorithm
5.2.6 Performance evaluation
5.2.7 Benefit brought by coloring
5.2.8 Adaptivity of the coloring algorithm
5.3 The optimized coloring algorithm for tree topologies
5.3.1 General principles
5.3.2 Comparison with TDMA-ASAP
5.4 Generalization
5.5 Network dimensioning with network calculus
5.5.1 Network calculus
5.5.2 Comparison of our algorithm with ZigBee
5.6 Conclusion
6 Cross layering and integration of energy efficient techniques
6.1 Introduction
6.2 State of the art
6.3 Cross layering with EOLSR
6.3.1 Routing and application cross layering
6.3.2 Routing and MAC cross layering
6.3.3 Routing and energy management cross layering
6.4 Cross layering with SERENA
6.4.1 SERENA and application layer cross layering
6.4.2 SERENA and MAC layer cross layering
6.5 Synthesis
6.6 Application to the OCARI project
6.6.1 Project description
6.6.2 The OCARI network and its architecture
6.6.3 NwCARI: Energy efficient network layer
6.7 Conclusion
7 Conclusion and perspectives
7.1 Conclusion
7.2 Perspectives

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *