Equation of state expressed in terms of Helmholtz energy

somdn_product_page

(Downloads - 0)

Catégorie :

For more info about our services contact : help@bestpfe.com

Table of contents

CHAPTER 1 – Introduction
1.1 Challenge in the energy sector
1.1.1 General context
1.1.2 The role of coal
1.2 Power cycle
1.2.1 Definition
1.2.2 Power cycle classifications
1.3 Supercritical CO2 Brayton cycle
1.3.1 Motivation for integrating SC-CO2 Brayton cycle into pulverized coal-fired plant
1.3.2 Technology improvement and this dissertation
CHAPTER 2 – Thermodynamic model choice for CO2
2.1 Equation of state
2.1.1 Cubic equation of state
2.1.2 Virial equation
2.1.3 Equation of state expressed in terms of Helmholtz energy
2.1.4 SAFT equation
2.1.5 Representation of the critical region
2.2 Discussions and Selection of EoS candidates
2.3 Methods
2.3.1 Selection of properties for the comparison
2.3.2 Comparison steps
2.4 Results and discussion
2.4.1 Critical density
2.4.2 MAPE investigation of six candidate EoS
2.4.3 Graphic representation of SW EoS in the entire region of interest
2.4.4 Comparison of the SW EoS with the unused experimental data sets
CHAPTER 3 -Modeling and design of recuperated SC-CO2 Brayton cycle.
3.1 Process description of a recuperated SC-CO2 Brayton cycle
3.2 SequentialModular Simulation
3.3 Methodology for the design of components
3.3.1 Estimation of the UA product in the recuperator R1
3.3.2 Turbomachineries
3.3.3 Sensitivity analysis
3.4 Results and discussions
3.4.1 Process simulation results : influence of the thermodynamic model choice on cycle efficiency and other cycle performance indices
3.4.2 Influence of the thermodynamic model choice on component design
3.4.3 Sensibility analysis
CHAPTER 4 – Superstructure optimization of SC-CO2 Brayton cycle
4.1 Process synthesis
4.2 Optimization-based process synthesis
4.3 Optimization-based process synthesis procedure
4.3.1 Modeling of the superstructure
4.3.2 General mathematical problem formulation
4.4 Results
4.4.1 Preliminary comparison of the feasible and the infeasible approach
4.4.2 Superstructure Optimization of SC-CO2 Brayton cycle
4.4.3 Result validation by six Non Linear Problem optimizations
4.4.4 Sensitivity analysis
CHAPTER 5 – Energy and economic optimization based synthesis: SC-CO2 Brayton cycle for coal-fired plant application
5.1 Superstructure in industrial conditions
Contents xv
5.2 Mono-objective superstructure optimization of SC-CO2 Brayton cycle
5.2.1 General mathematical problem formulation for energy mono-objective optimization
5.2.2 Results
5.2.3 Sensitivity analysis
5.3 Techno-economic analysis of SC-CO2 Brayton cycle
5.3.1 Economic Approach adopted by EDF R&D for SC-CO2 Brayton cycle
5.3.2 LCOE result of the two best energy optimization results
5.4 Multi-objective superstructure optimization of SC-CO2 Brayton cycle
5.4.1 General mathematical problem formulation for energy aspect optimization
5.4.2 Results and discussions
CHAPTER 6 – Conclusion and perspectives
Bibliography

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *