(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
1.1. Introduction
1.2. Natural gas
1.3. Global climate change
1.3.1. Biogas
1.4. Fischer-Tropsch processes
1.5. Industrial methanol synthesis
1.6. Introduction to plasma
1.6.1. Applications of plasma
1.6.2. Types of plasma
1.6.3. Generation of non-thermal plasma by electric fields
1.6.4. Townsend mechanism of electric breakdown
1.6.5. Continuous and pulsed direct current discharges
1.6.5.1. Corona discharges
1.6.5.2. Gliding arc discharges
1.6.5.3. Dielectric barrier discharges (DBD)
1.6.5.3.1. Microdischarges
1.6.5.3.2. Memory effect in DBD plasma
1.7. Plasma chemistry for methanol production
1.7.1. Plasma reactor designs for partial oxidation of methane (POM)
1.7.2. CH4/O2 ratio
1.7.3. Noble gas effect
1.8. Conclusion
2.1. Plasma power measurements
2.2. Intensified charge coupled device (ICCD)
2.3. Gas chromatography
2.3.1. Micro-gas chromatography
2.3.2. Thermal conductivity detection
2.3.3. Flame ionization detection
2.4. Conclusion
3.1. Introduction to milli-reactor development
3.2. Reactor fabrication
3.2.1. Plasma milli-reactor cellule fabrication
3.2.2. Borosilicate glass engraving
3.2.3. Electrode patterning
3.2.4. General description of the sputtering process
3.2.5. Electrode deposition for POM
3.2.6. Electrode deposition for discharge characterization
3.2.7. Sealing step
3.3. Electrical characterization of the reactor
3.3.1. Influence of the argon percentage on the electrical characteristics of the discharge
3.3.2. Influence of the O2/CH4
3.4. Characterization of discharge uniformity by ICCD measurements
3.4.1. ICCD measurements in pure gases
3.4.2. ICCD measurements CH4/O2/Ar mixture
3.5. Conclusion
4.1. General performance for partial oxidation of methane (POM)
4.2. Methane to methanol in a plasma milli-reactor
4.2.1. Influence of flow rate on methanol selectivity (ICCD)
4.2.2. Influence of argon concentration on methanol selectivity
4.2.3. Influence of the O2/CH4 ratio on methanol selectivity
4.3. Conclusion
5.1. Introduction to the simulation of a DBD plasma milli-reactor
5.2. Description of the filamentary aspect of DBD plasma
5.3. The DBD plasma modelling
5.3.1. Governing equations
5.3.2. Electron transport equations
5.3.3. Diffusive transport equations for heavy species
5.3.4. Poisson’s equations and surfaces boundary conditions for DBD plasma
5.3.5. Chemical kinetics and source term treatment
5.4. Introduction to numerical simulation (plasma module COMSOL Multiphysics 5.1) and description of the different modeling approaches
5.4.1. Sinusoidal model
5.4.2. Multi-time scale model
5.4.2.1. DBD model for the simulation of one microdischarge
5.4.2.2. 0D model for time evolution of chemical species
5.5. Simulation results
5.5.1. Results obtained with the sinusoidal model
5.5.2. Results obtained with the multi-time scale model
5.5.2.1. Energetic aspects
5.5.2.2. Production of primary radicals
5.5.3. Comparison of sinusoidal model and multi-time scale model
5.5.3.1. Energetic aspects
5.5.3.2. Production of stables species at low constant SIEM
5.6. Comparison of multi-time scale model results and experimental results
5.6.1. Methane conversion
5.6.2. Influence of Argon percentage on methanol selectivity
5.6.3. Influence of O2/CH4 ratio on methanol selectivity
5.7. Conclusion




