Head-direction cells

somdn_product_page

(Downloads - 0)

Catégorie :

For more info about our services contact : help@bestpfe.com

Table of contents

FOREWORD
INTRODUCTION
PART I Navigation and Mental representation of space
1. Mental representation of space
1.1. Tolman’s “Cognitive maps”
1.2. The discovery of hippocampal place cells, substrate for Tolman’s cognitive map
1.3. From cognitive maps to mental representations of space
2. Building a mental representation of space – processes and neural substrates
2.1. Multi-modal information integration
2.1.1. Allothetic information
2.1.2. Idiothetic information
2.2. Reference frame manipulations
2.2.1. Head-to-body and head-to-world transformations
2.2.2. Translation between whole-body egocentric and allocentric reference frames
2.3. Place information: element of the mental representation of space
2.3.1. Head-direction cells
2.3.2. Grid cells
2.3.3. Boundary cells
2.3.4. Identifying a place: hippocampal place cells
2.3.5. Recognizing a place: pattern completion, pattern separation
3. Using the mental representation of space – processes and neural substrates
3.1. Goal information
3.2. Planning & Decision-making
3.3. Organization of action sequences
PART II Neural Dynamics across Task Learning
1. Learning stages
2. Network dynamics across learning
2.1. Imaging results
2.2. Theoretical models
3. Learning stages in rodent studies
3.1. Neural dynamics in goal-directed and habitual behaviours
3.2. Neural dynamics in spatial learning
PART III From mental representations of space to spatial memory
1. Different forms of memory
1.1. Sensory memory
1.2. Short-term memory
1.3. Long term memory – storage and consolidation
2. Different memory systems in long-term memory
2.1. Non-declarative memory
2.2. Declarative memory
2.2.1. Episodic memory
2.2.2. Semantic memory
PART IV: Navigation Strategies: Identifying the mental representation of space
1. Navigation strategies and computational processes
1.1. Path integration
1.2. Goal or Beacon approaching
1.3. Stimulus-response strategy
1.4. Map-based strategy
1.5. Reinforcement learning to model stimulus-response and map-based strategies
2. Tasks to identify strategies and their neural basis
2.1. Stimulus-response and map-based strategies
2.2. The starmaze task and sequence-based navigation
3. Sequence-based navigation (or sequential egocentric strategy): what computational processes and what neural basis?
3.1. Sequential egocentric strategy
3.2. Neural basis of sequence learning in rodents
3.3. Hippocampus and sequential activity
3.3.1. Retrospective and prospective firing
3.3.2. Sequence representation
3.3.3. Time cells
Conclusion and experimental question
METHODS FOCUS: FOS IMAGING
1. Fos imaging
2. Network analysis
2.1. Functional connectivity
2.2. Graph theory
RESULTS
Article 1: Complementary Roles of the Hippocampus and the Dorsomedial Striatum during Spatial and Sequence-Based Navigation Behaviour
1. Introduction
2. Main results
3. Discussion
Contents
4. Article
Article 2, in preparation: Functional connectome and learning algorithm for sequence-based navigation
1. Introduction
2. Methods
2.1. Behavioural study
2.2. Fos imaging
2.3. Computational learning study
2.4. Statistics
3. Results
4. Discussion
5. Supplementary material
GENERAL DISCUSSION
1. Hippocampus and sequence-based navigation
2. Model-free reinforcement learning with memory and sequence-based navigation
3. Network underlying sequence-based navigation
BIBLIOGRAPHY

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *