(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
CHAPTER I: INTRODUCTION
1.1. Hydrogen aspects
1.1.1 Hydrogen: energy vector
1.1.2 Hydrogen production
1.1.2.1 Fossil energy transformation
1.1.2.2 Water electrolysis
1.1.2.3 Biomass
1.1.3 Hydrogen transformation to energy
1.1.3.1 Internal Combustion Engine
1.1.3.2 Fuel Cell
1.2 Hydrogen storage
1.2.1 Gaseous storage
1.2.1.1 Hydrogen storage by compression
1.2.2 Liquid storage
1.2.2.1 Hydrogen storage by liquefaction
1.2.3 Solid storage
1.2.3.1 Chemical storage
1.2.3.2 Physical storage
1.3 Hydrogen storage in Metal-Organic Frameworks
1.4 Nanosizing effect
1.4.1 Nanostructuration by mechanical milling
1.4.2 Nanoparticles/nanowires formation
1.4.3 Nanoconfinement: monodispersion
CHAPTER II: MATERIALS AND METHODS
2.1 Synthesis
2.1.1 MIL-101(Cr)
2.1.2 Nanoparticles confinement
2.1.2.1 Liquid Impregnation (LI)
2.1.2.2 Double Solvent Method (DSM)
2.2 Characterization
2.2.1 Physicochemical characterization
2.2.1.1 Powder X-Ray Diffraction analyses
2.2.1.2 Scanning Electron Microscopy analyses
2.2.1.3 Transmission Electron Microscopy, Energy-dispersive X-Ray spectroscopy .
2.2.1.4 Specific surface area & total pore volume
2.2.1.5 X-Ray Absorption Spectroscopy
2.2.1.6 Inductively Coupled Plasma
2.2.1.7 Fourier Transform Infrared spectroscopy
2.2.1.8 Differential Thermal Analysis coupled with Thermogravimetric Analysis .
2.2.2 Hydrogenation properties
2.2.2.1 Thermo-Desorption Spectroscopy
2.2.2.2 Pressure-Composition-Isotherm
CHAPTER III: MIL-101(Cr) DOPED WITH PALLADIUM NANOPARTICLES
3.1 Synthesis optimization
3.1.1 Impregnation and reduction method
3.1.2 Degassing effect
3.2 Palladium doping: Variable metal loading
3.2.1 X-Ray Diffraction
3.2.2 Fourier Transform Infrared Spectroscopy
3.2.3 Transmission Electron Microscopy
3.2.4 Scanning Electron Microscopy
3.2.5 Specific surface area & total pore volume
3.2.6 Inductively Coupled Plasma – Mass spectroscopy
3.3 Interaction with Hydrogen
3.3.1 Pressure-Composition-Isotherm at high pressure and low temperature (77 K)
3.3.2 Pressure-Composition-Isotherm at low pressure and low temperature (78 – 107 K)
3.3.3 Pressure-Composition-Isotherm at low pressure and room temperature
3.3.4 In-situ X-Ray Absorption Spectroscopy
3.3.5 Hydrogen desorption properties
3.3.5.1 Hydrogen desorption for MIL-101(Cr)
3.3.5.2 Hydrogen desorption for 10-Pd@MIL-101(Cr) composite
3.3.5.3 Hydrogen diffusion
3.3.5.4 Hydride formation
3.3.5.5 Activation energy of desorption
3.4 Conclusion
3.5 Perspectives
CHAPTER IV: MIL-101(Cr) DOPED WITH RHODIUM NANOPARTICLES
4.1 Synthesis optimization by double solvent method
4.1.1 Reduction temperature effect
4.1.2 Reduction time effect
4.2 Rhodium doping: Variable metal loading
4.2.1 X-Ray Diffraction
4.2.2 Transmission Electron Microscopy
4.2.3 Specific surface area & total pore volume
4.3 Hydrogen sorption properties
4.3.1 Pressure-Composition-Isotherm at low temperature (78 – 107 K)
4.3.2 Pressure-Composition-Isotherm at low pressure and room temperature
4.3.3 Hydrogen desorption properties
4.3.3.1 Hydrogen desorption for Rh@MIL-101(Cr) composite
4.3.3.2 Air exposure effect
4.3.3.3 Nanosize effect and the scaling law
4.3.3.4 Cycling effect
4.4 Conclusion
CHAPTER V: MIL-101(Cr) DOPED WITH BIMETALLIC NANOPARTICLES
5.1 Bimetallic nanoparticles doping
5.1.1 X-Ray Diffraction (XRD)
5.1.2 Transmission Electron Microscopy (TEM)
5.1.3 Energy-Dispersive X-ray spectroscopy (EDX)
5.1.4 Differential Thermal Analysis coupled with Thermogravimetric Analysis (DTA-TGA)
5.1.5 Specific surface area & total pore volume
5.2 Interaction with Hydrogen
5.2.1 Pressure-Composition-Isotherm at low pressure and room temperature
5.2.2 Hydrogen desorption properties
5.3 Conclusion



