Implementation in Boltzmann codes

somdn_product_page

(Downloads - 0)

Catégorie :

For more info about our services contact : help@bestpfe.com

Table of contents

i introduction to particle cosmology 
1 the standard cosmological model 
1.1 General Relativity in a homogeneous and isotropic Universe
1.1.1 Geometry of the expanding Universe
1.1.2 Dynamics of the expanding Universe
1.1.3 Distances in our Universe
1.2 Inflation in a nutshell
1.2.1 Original motivations for Inflation
1.2.2 Scalar field inflation and slow-roll conditions
1.3 Thermal history of the Universe
1.3.1 From equilibrium to freeze-out
1.3.2 Big Bang Nucleosynthesis
1.3.3 Recombination
1.3.4 Reionization
2 from perturbations to observables: cmb and matter power spectrum 
2.1 Cosmological perturbation theory at first order
2.1.1 Perturbed Einstein equations
2.1.2 Perturbed collisionless Boltzmann equations
2.1.3 Thomson scattering collision term and polarization anisotropies
2.1.4 Initial conditions from Inflation
2.2 The CMB and matter power spectrum
2.2.1 Cosmology as a stochastic theory
2.2.2 Primordial power spectrum from inflation
2.2.3 The CMB power spectra
2.2.4 The matter power spectrum
3 massive relics in the universe
3.1 The Standard Model of Particle Physics in a nutshell
3.1.1 The Standard Model and its main successes
3.1.2 Main issues with the Standard Model
3.2 Neutrino masses in Cosmology
3.2.1 Neutrino oscillations: evidence for neutrino masses
3.2.2 Sterile neutrinos and neutrino mass mechanisms
3.3 Evidence for Dark Matter
3.3.1 Galaxy rotation curves and density profiles
3.3.2 Clusters of galaxy : X-rays and weak lensing
3.3.3 The Dark Matter relic abundance and the WIMP miracle
3.4 Models predicting massive relics
3.4.1 WIMP Dark Matter candidates
3.4.2 Decaying massive relics
3.4.3 A word on detection strategies
3.5 Electromagnetic cascade: an overview
3.5.1 Electromagnetic cascade at high redshift (z 1000)
3.5.2 Electromagnetic cascade close to and after recombination
3.6 CMB spectral distortions
3.6.1 Basics of the thermalization problem
3.6.2 Usual analytical estimates: the and y parameters
3.6.3 Some sources of spectral distortions
ii signatures of decay and annihilations of massive relics in cosmological observables
4 dark matter invisible decay 
4.1 Introduction and models
4.2 Boltzmann equations for the decaying Dark Matter
4.2.1 Background equations
4.2.2 Perturbation equations in gauge invariant variables
4.3 Cosmological effects of a decaying Dark Matter fraction
4.3.1 Impact of Dark Matter decay on the CMB
4.3.2 Impact of the decaying Dark Matter on the matter power spectrum
4.3.3 Potential degeneracy with the neutrino mass
4.4 Application of the decaying Dark Matter model
4.4.1 Constraints from the CMB power spectra only
4.4.2 Adding low redshift astronomical data
4.5 Conclusions
5 non-thermal bbn from electromagnetically decaying particles
5.1 Introduction
5.2 E.m. cascades and breakdown of universal nonthermal spectrum
5.3 Nonthermal nucleosynthesis
5.3.1 Review of the formalism
5.3.2 Light element abundances
5.4 Constraints from the CMB
5.5 Non Universal constraints from BBN
5.5.1 Constraints from 4He
5.5.2 Constraints from 2H
5.5.3 Constraints from 3He
5.6 A solution to the cosmological lithium problem
5.6.1 Proof of principle
5.6.2 A concrete realisation with a sterile neutrino
5.7 Conclusions
6 cosmological constraints on exotic injection of electromagnetic energy
6.1 Introduction
6.2 CMB power spectra constraints
6.2.1 Standard equations
6.2.2 Effects of electromagnetic decays on the ionization history and the CMB power spectra
6.3 Results: Summary of constraints and comparison with other probes
6.3.1 Methodology
6.3.2 Results and comparison of various constraints
6.4 Applications and forecasts
6.4.1 Low mass primordial black holes
6.4.2 High mass primordial black holes
6.4.3 Sterile neutrinos
6.4.4 The 21 cm signal from the Dark Ages
6.5 Conclusion
7 dark matter annihilations in halos and high-redshift sources of reionization 
7.1 Introduction
7.2 Ionization and thermal evolution equations
7.2.1 Dark Matter annihilation in the smooth background
7.2.2 Dark Matter annihilation in halos
7.3 Impact of high redshift sources on the reionization history
7.4 Impact of reionization histories on the CMB spectra
7.5 Discussion and prospects
iii neutrino properties from current and future cosmological data 
8 robustness of cosmic neutrino background detection in the cmb 
8.1 Introduction
8.2 Modelling the properties of the (dark) radiation component
8.2.1 Massless neutrinos
8.2.2 Massive neutrinos
8.3 Impact of (c2 e ; c2 vis) on observables
8.3.1 Effect on neutrino perturbations
8.3.2 CMB temperature and polarisation
8.3.3 Matter power spectrum
8.4 Models and data set
8.4.1 Model descriptions
8.4.2 Data sets and parameter extraction
8.5 Results
8.6 Conclusions
9 physical effects of neutrino masses in future cosmological data
9.1 Introduction
9.2 Effect of a small neutrino mass on the CMB
9.2.1 General parameter degeneracies for CMB data
9.2.2 CMB data definition
9.2.3 Degeneracies between very small M’s and other parameters with CMB data only
9.3 Effect of neutrino mass on the BAO scale
9.4 Effect of neutrino mass on Large Scale Structure observables
9.4.1 Cosmic shear and galaxy clustering spectrum
9.4.2 Degeneracies between M and other parameters
9.5 Joint analysis results
9.5.1 Combination of CMB, BAO and galaxy shear/correlation data
9.5.2 Adding 21cm surveys
9.6 Conclusions

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *