In-Time Transponder Concept

somdn_product_page

(Downloads - 0)

Catégorie :

For more info about our services contact : help@bestpfe.com

Table of contents

Chapter 1. Introduction
1.1. Asteroid study missions
1.2. Study of the internal structure of small bodies
1.3. Rosetta mission
Chapter 2. Small bodies radar tomography by bi-static radar
2.1. CONSERT
2.1.1. Instrument description
2.1.2. Scientific objectives of CONSERT
2.1.3. CONSERT functioning principle
2.1.4. In-Time Transponder Concept
2.1.5. CONSERT operation
2.1.6. CONSERT signal
2.1.7. CONSERT results
2.1.8. Possible enhancement
2.2. Low-Frequency Radar (LFR)
2.2.1. AIDA mission
2.2.2. LFR instrument description
2.2.3. Scientific objectives
2.2.4. LFR Antennas
2.2.5. LFR Electronic box
LFR Digital Board
2.2.6. LFR Operation
Operation modes
2.3. General Approach of the thesis
2.3.1. Research objectives
2.3.2. Thesis organization
Chapter 3. LFR Time Analysis
3.1. Introduction to clocks
3.1.1. Types of oscillators
Atomic resonator
Quartz Crystal Resonator
3.1.2. Frequency stability
3.1.3. Deterministic processes
Aging
Temperature
Initial frequency offset
Others
3.1.4. Random processes
3.1.5. Allan variance
3.1.6. Clock model
3.1.7. CONSERT and LFR clocks
3.2. Requirement analysis for each time scale
3.2.1. Coherent accumulation
3.2.2. Ping to Pong
3.2.3. Sounding to Sounding time reference
3.2.4. Sounding to Sounding phase reference
3.2.5. Tx-Rx windows
3.2.6. Frequency stability resume
3.3. Time Model in-time transponder
3.3.1. Time events model
3.3.2. Peak position measured in the Lander
3.3.3. Propagation delay measured in the Orbiter
3.3.4. Time errors introduced by the system
Sampling time error
SNR peak time error
3.4. Clock-drift-follow technique (Pong-Pong technique)
Chapter 4. LFR simulation
4.1. Short-term LabView simulator
4.2. Long-term simulation
4.2.1. Assumptions for the simulator
4.2.2. Algorithm
4.3. Results from simulation
4.3.1. Accumulated time error
4.3.2. Expected behavior of Lander peak detection
Comparison between CONSERT and simulator Lander peak position
4.3.3. Expected behavior of Orbiter propagation delay
4.3.4. Clock characteristics effects
Initial frequency offset
Aging
Temperature
4.3.5. Phase rotation effect
Phase rotation effect comparison between CONSERT calibration data and Simulator
4.3.6. LFR specifications
Ping to Pong
Sounding to Sounding time reference
Sounding to Sounding phase reference
Tx-Rx windows
Chapter 5. Real clock measurement
5.1. Test bench design
5.1.1. Requirements
5.1.2. Time and phase measurement techniques
ADC
DMTD
5.2. DMTD analysis
5.3. Implementation of DMTD
5.3.1. Hardware Board
5.3.2. Digital Design
Glitch effect in the FPGA
5.3.3. Fridge
5.4. Data Preprocessing
5.5. Test bench verification
5.6. Test bench performances
5.7. Integration of data Test Bench to Simulator
Chapter 6. Clock validation and compensation methods
6.1. Clock validation for frequency requirements
6.2. Phase and time reconstruction
6.2.1. Clock drift estimation
6.2.2. Time reconstruction
6.2.3. Phase reconstruction
6.2.4. Number of Pong-Pong transmissions
Chapter 7. Conclusions and perspectives
7.1. Time analysis advantages
7.2. Instrument improvements (CONSERT – LFR)
7.2.1. Power consumption by Tx window
7.2.2. ADC sampling frequency
7.2.3. Second version Test Bench
7.3. Perspectives
7.3.1. Clock characterization
7.4. Calibration
7.4.1. Calibration and onboard correction
7.4.2. New clock technologies

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *