Initial stress state and elastic rock mass properties

somdn_product_page

For more info about our services contact : help@bestpfe.com

Table of contents

Chapter 1 – Introduction
1.1 Mining-induced seismicity mechanisms
1.2 Monitoring of mining-induced seismicity and hazard assessment
1.3 Motivation, strategy and structure of this thesis
Chapter 2 – Study area: Garpenberg mine and Lappberget orebody
2.1 An introduction to Garpenberg mine
2.2 Geological setting and initial stress state
2.2.1 Lappberget orebody and weakness zones
2.2.2 Initial stress state and elastic rock mass properties
2.3 Mining method and sequencing
2.4 Geophysical and geotechnical monitoring in Lappberget
2.4.1 Extensometer data
2.4.2 Strain measurements
2.4.3 Microseismic data
2.5 Seismic activity and observed damage
Chapter 3 – Seismic data processing
3.1 Routines of seismic data acquisition and processing
3.1.1 Type of recorded seismic signals
3.1.2 Challenges and common errors in daily data processing
3.2 Picking consistency evaluation – The Wadati analysis
3.3 Evaluation of microseismic network performances
3.3.1 EMAP algorithm methodology
3.3.2 EMAP application to Lappberget microseismic network
3.4 Considerations about the extension of the analyzed area
3.5 Seismic source parameters estimation
3.5.1 Considerations on source parameters uncertainties
Chapter 4 – Rock mass response to mining
4.1 Spatiotemporal behavior of microseismic activity and mine blasts
4.1.1 Seismic sequences and clusters
4.2 Analysis of seismic source parameters
4.2.1 Temporal variation in b-value
4.3 What drives seismicity?
4.4 Analysis of geotechnical observations
4.5 Summary and discussion
Chapter 5 – Numerical modelling
5.1 Numerical modelling techniques
5.2 Model choice and strategy
5.3 Description of the model
5.3.1 Model geometry and boundaries
5.3.2 Model meshing
5.3.3 Initial and boundary conditions
5.3.4 Modelled elements and mechanical effect of paste fill
5.3.5 Constitutive laws and mechanical properties
5.3.6 Simulated mining sequence
5.4 Comparison with in situ geotechnical measurements
5.5 Model results and interpretations
5.5.1 Analysis of stress distribution
5.5.2 Analysis of strain distribution
5.5.3 Analysis of plastic zones and influence of weak geological materials
5.5.4 Temporal evolution of model parameters
5.6 Discussion and conclusion
Chapter 6 – Combined analysis of seismicity and numerical modelling
6.1 Relating induced seismicity with geomechanical modelling
6.2 Strategy of comparison in our work
6.3 Qualitative comparison at large-scale
6.3.1 Plastic zone and seismic activity
6.3.2 Instability criteria and seismic activity
6.4 Quantitative comparison at small-scale
6.4.1 Model and seismic parameters at punctual locations
6.4.2 Model and seismic parameters at spheres location
6.5 Summary and conclusion
Chapter 7 – Summary, conclusions and perspectives
7.1 Microseismic and geotechnical data analysis and interpretation
7.2 Numerical modelling and mining-induced seismicity
7.3 General perspectives
Bibliography

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *