Ligands of nanocrystals

somdn_product_page

(Downloads - 0)

Catégorie :

For more info about our services contact : help@bestpfe.com

Table of contents

I.1 Colloidal semiconductor nanocrystals
I.2 The transport and doping of colloidal nanocrystal arrays
II.1 Introduction to nanocrystal-based infrared photodetection
II.2 Ag2Se nanocrystals for mid-infrared photodetection
II.3 Degenerately doped ITO nanocrystals for mid-infrared detection
I.1.1 Quantum confinement effect
I.1.2 Hot injection synthesis of colloidal nanocrystals
I.1.3 Ligands of nanocrystals
I.1.4 Heterostructure of nanocrystals
I.1.5 Shape control of Nanocrystals
I.2.1 The hopping transport in nanocrystal solids and ligand exchange
I.2.2 Field effect transistor
I.2.3 X-ray photoemission to build energy diagrams of nanocrystal arrays
Part II Heavy-metal-free nanocrystals for mid-infrared photodetection
II.1.1 Infrared photodetection
II.1.2 Photoconductors and photodiodes
II.1.3 Figures of merit for infrared photodetection
II.1.4 Infrared-active nanocrystals
II.1.5 The state-of-the-art of nanocrystal-based photodetectors
II.1.6 Challenges of nanocrystal based infrared photodetectors
II.2.1 Tunable mid-infrared intraband transitions of Ag2Se
II.2.2 The origin of doping for Ag2Se nanocrystals
II.2.3 Transport properties of Ag2Se nanocrystal arrays in dark conditions
II.2.4 Photoconductance of Ag2Se nanocrystal arrays
II.2.5 Conclusions and perspectives
III.1 Introduction to nanocrystal light emitters
III.2 Nanoplatelet-based LEDs for all-nanocrystal LiFi-like communication
III.3 HgTe nanocrystals for infrared electroluminescence and active imaging
II.3.1 LSPR in conducting nanostructures
II.3.2 Synthesis and optical properties of ITO nanocrystals
II.3.3 Transport properties of ITO nanocrystals
II.3.4 Photoconductance in ITO nanocrystal films
II.3.5 Conclusions and perspectives
Part III Nanocrystal-based LEDs and their applications
III.1.1 Colloidal nanocrystals for display with large gamut
III.1.2 Nanocrystals as down converters for QD-LCD display
III.1.3 QLED for future display
III.1.4 Nanocrystal-based LEDs beyond QD and visible
III.2.1 Synthesis and characterization of CdSe/CdZnS NPLs
III.2.2 Fabrication and characterization of NPL based LED
III.2.3 Characterization of the LED devices based on different CdSe/CdZnS NPLs
III.2.4 The origin of efficiency droop: beyond Auger recombination in emitting layer
III.2.5 Toward all-nanocrystal-based LiFi-like communication
III.2.6 Conclusions and perspectives
III.3.1 The design of the new-generation HgTe nanocrystal-based LED
III.3.2 Synthesis and characterization of the building-block nanocrystals
III.3.3 The investigation of HgTe/ZnO heterojunction as light emitter
III.3.4 Fabrication and characterization of the SWIR HgTe based LEDs
III.3.5 Toward narrower and brighter LED using sphere HgTe seeds
III.3.6 Conclusions and perspectives

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *