(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
CHAPTER 1. MATERIALS, EXPERIMENTAL METHODS, AND ANALYTICAL TECHNIQUES
1.MATERIALS
1.1. Reactants used in the synthesis of fulvic acids
1.2. Reactants used in the complexation studies
1.3. Dialysis membranes
2. EXPERIMENTAL METHODS
2.1. Synthesis of fulvic acids
2.1.1. Synthesis in the C-H-O system
2.1.1.1. Autopolymerization of catechol
2.1.1.2. Polymerization through condensation of catechol and acetic acid
2.1.2. Synthesis in the C-H-O-N system
2.1.3. Synthesis in the C-H-O-N-S system
2.2. Lyophilisation
2.3. Extraction
2.3.1. Solid-liquid extraction
2.3.2. Liquid-liquid extraction
3. ANALYTICAL TECHNIQUES
3.1. Elemental analysis
3.2. X-ray diffraction
3.3. Infrared spectroscopy
3.4. UV-visible spectroscopy
3.5. Electrospray ionization – mass spectroscopy (ESI-MS)
3.6. Atmospheric pressure chemical ionization – mass spectroscopy (APCI-MS)
CHAPTER 2. CHARACTERIZATION OF THE SYNTHESIZED FULVIC ACIDS
1. FULVIC ACID SYNTHESIZED BY POLYMERIZATION OF CATECHOL
1.1. Elemental analysis
1.2. Scanning electron microscopy
1.3. X-ray diffraction
1.4. ATR-FTIR spectroscopy
1.4.1. Catechol
1.4.2. Synthetic fulvic acid SFA_1
1.5. UV-Visible absorption spectrophotometry
1.6. Electrospray ionization – mass spectrometry (ESI-MS)
1.7. Atmospheric pressure chemical ionisation mass spectrometry (APCI-MS)
1.7.1. Analysis of raw SFA_1 by LC-APCI-MS-MS
1.7.2. Analysis of purified SFA_1 by APCI-MS
1.8. Discussion
1.8.1. Oxidative coupling
1.8.2. Quinone formation and its reactions
2. FULVIC ACID SYNTHESIZED BY CONDENSATION OF CATECHOL AND ACETIC ACID
2.1. Elemental analysis
2.2. Scanning electron microscopy
2.3. X-ray diffraction
2.4. ATR-FTIR spectroscopy
2.4.1. Acetic acid
2.4.2. Sodium acetate, hydrated
2.4.3. Synthetic fulvic acid SFA_2
2.5. UV-Visible absorption spectrophotometry
2.6. Electrospray ionization – mass spectrometry (ESI-MS)
2.7. Atmospheric pressure chemical ionisation mass spectrometry (APCI-MS)
2.7.1. Analysis of raw SFA_2 by LC-APCI-MS-MS
2.7.2. Analysis of purified SFA_2 by APCI-MS
2.7.3. Analysis by APCI-MS of the methanol extract obtained by solid-liquid extraction of raw SFA_2
2.8. Discussion
3. FULVIC ACID SYNTHESIZED BY CONDENSATION OF CATECHOL AND GLYCINE
3.1. Elemental analysis
3.2. Scanning electron microscopy
3.3. X-ray diffraction
3.4. ATR-FTIR spectroscopy
3.4.1. Glycine
3.4.2. Synthetic fulvic acid SFA_3
3.5. UV-Visible absorption spectrophotometry
3.6. Electrospray ionization – mass spectrometry (ESI-MS)
3.7. Atmospheric pressure chemical ionization mass spectrometry (APCI-MS)
3.7.1. Analysis of raw SFA_3 by LC-APCI-MS-MS
3.7.2. Analysis of purified SFA_3 by APCI-MS
3.8. Discussion
4. FULVIC ACID SYNTHESIZED BY CONDENSATION OF CATECHOL AND CYSTEINE
4.1. Elemental analysis
4.2. Scanning electron microscopy
4.3. X-ray diffraction
4.4. ATR-FTIR spectroscopy
4.4.1. Cysteine
4.4.2. Synthetic fulvic acid SFA_4
4.5. UV-Visible absorption spectrophotometry
4.6. Electrospray ionization – mass spectrometry (ESI-MS)
4.7. Atmospheric pressure chemical ionization mass spectrometry
4.7.1. Analysis of raw SFA_4 by LC-APCI-MS-MS
4.7.2. Analysis of purified SFA_4 by APCI-MS
4.8. Discussion
CHAPTER 3. URANYL(VI)-FULVATE COMPLEXATION
3.1. Objectives of the experiment and scientific background
3.2. Experimental section
3.2.1 Uranyl(VI)-SFA_1 systems at pH 4
3.2.2 Uranyl(VI)-SFA_1 systems at neutral pH (pH 7)
3.2.3 Uranyl(VI)-SFA_1 systems at basic pH (pH 10)
REFERENCES



