Managing mixed fisheries

somdn_product_page

(Downloads - 0)

For more info about our services contact : help@bestpfe.com

Table of contents

1 General introduction 
1.1 Addressing the modern concept of sustainability
1.1.1 Definition and normative foundations
1.1.2 Sustainability in a context of uncertainties
1.1.3 Viability theory to address the sustainability of renewable resource extraction
1.2 Sustainability in fisheries management: the Ecosystem Approach to Fisheries and science in support to its implementation
1.2.1 Ecosystem Approach to Fisheries: the incarnation of sustainability in fisheries management
1.2.2 Development of integrated models to operationalize the Ecosystem Approach to Fisheries
1.2.3 Eco-viability modelling for holistic sustainability assessments of fisheries
1.3 Managing mixed fisheries
1.3.1 Limitations of single-species approaches for the management of mixed fisheries
1.3.2 Specific management arrangements in mixed fisheries
1.3.3 Scientific advice for mixed fisheries: some current approaches and limitations
1.4 Thesis objectives
1.5 Context of the PhD
1.6 Case studies
1.6.1 Bay of Biscay French demersal fishery (BoB)
1.6.2 Australian Southern and Eastern Scalefish and Shark Fishery (SESSF)
1.7 Structure of the thesis
2 Providing integrated total catch advice for the management of mixed fisheries with an eco-viability approach
2.1 Introduction
2.2 The Bay of Biscay mixed demersal fishery
2.3 Bio-economic simulation model
2.3.1 Operating model
2.3.2 Management procedures
2.4 Eco-viability evaluation
2.4.1 Eco-viability framework
2.4.2 Eco-viability under uncertainty
2.5 Model’s dimensions and calibration
2.6 Management strategies
2.7 Results
2.7.1 The joint production problem
2.7.2 Biological viability
2.7.3 Fleets’ viability
2.7.4 From target reference points on fishing mortality to TAC advice
2.8 Discussion
2.8.1 Towards operational eco-viable TAC advice for mixed fisheries
2.8.2 Its application to the Bay of Biscay demersal mixed fishery
2.8.3 Limitations and perspectives
2.8.4 Articulation with current ICES mixed fisheries advice
3 Modelling quota uptake in multi-species fisheries managed with ITQs 
3.1 Introduction
3.2 Equilibrium of multispecies ITQ markets
3.2.1 The model
3.2.2 Market equilibrium
3.3 The convergence towards ITQ market equilibrium
3.3.1 The tâtonnement algorithm
3.3.2 Implementation considerations
3.3.3 Numerical application to the Australian Southern and Eastern Scalefish and Shark Fishery
3.4 Discussion
3.4.1 Fishing incentives under perfectly competitive ITQ markets
3.4.2 Observations from multi-species ITQ markets
3.4.3 Perspectives for process-based simulation models of multi-species ITQ markets
3.5 Conclusion
4 Flexibility of joint production in mixed fisheries and implications for management
4.1 Introduction
4.2 The Australian Southern and Eastern Scalefish and Shark Fishery (SESSF) 76
4.3 Methods
4.3.1 IAM bio-economic model
4.3.2 Model calibration
4.3.3 Exploring flexibility in joint productions
4.4 Results
4.4.1 Flexibility in joint productions
4.4.2 Socio-economic performance
4.5 Discussion
4.6 Conclusion
5 From fish stocks to fishers and consumers: eco-viability in the Australian Southern and Eastern Scalefish and Shark Fishery 
5.1 Introduction
5.2 The Australian Southern and Eastern Scalefish and Shark Fishery (SESSF)
5.3 Methods
5.3.1 IAM bio-economic model
5.3.2 Eco-viability framework
5.3.3 Simulation plan
5.4 Results
5.4.1 Operating domain accounting for market dynamics
5.4.2 Eco-viability analysis
5.4.3 Trade-offs within the eco-viable space
5.5 Discussion
5.5.1 Definition of sustainability thresholds
5.5.2 From sustainability to trade-offs
5.5.3 Market dynamics in multispecies fisheries: what is the addedvalue for management advice?
5.6 Conclusion
6 General discussion 
6.1 Key results of the thesis
6.2 The representation of mixed fisheries dynamics in the models used to support tactical decision-making in mixed fisheries
6.2.1 Modelling the biological dynamics of mixed fisheries
6.2.2 Modelling fishing activity
6.2.3 Modelling ITQ markets in multi-species fisheries
6.2.4 Modelling fish price dynamics
6.3 Integrating biological, economic and social considerations in the advisory process
6.3.1 Assessing eco-viability
6.3.2 Highlighting trade-offs
6.3.3 Contributions of the approach to advisory procedures in both European and Australian federal contexts
6.4 Perspectives
6.4.1 Modelling human behaviour under uncertainty
6.4.2 Tackling the curse of dimensionality
6.4.3 Better accounting of ecological dimensions of EBFM
6.4.4 Beyond eco-viability

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *