Methods of nanoparticles formation

somdn_product_page

(Downloads - 0)

For more info about our services contact : help@bestpfe.com

Table of contents

Chapter (I)Bibliography
I) Introduction
II) Drug Delivery Systems
II.1) Development of Drug Delivery Systems (DDS)
II.1.1) Three generations of DDS
II.1.2) DDS based on amphiphilic copolymers
II.2) Methods of nanoparticles formation
II.2.1) Nanoprecipitation method
II.2.2)Dialysis method
II.2.3) Emulsion/organic solvent evaporation method
II.2.3.a) Single emulsion technique
II.2.3.b) Double emulsion technique
II.3) Smart or sensitive drug delivery systems
II.3.1) pH-sensitive DDS
II.3.2) Thermosensitive DDS
II.3.3) Light sensitive DDS
II.3.3.a) Shifting the hydrophilic-hydrophobic balance
II.3.3.a.1) Reversible shifting hydrophilic-hydrophobic balance
II.3.3.a.2) Irreversible shifting hydrophilic hydrophobic balance
II.3.3.b) Breaking block junction (Figure 14-b)
II.3.3.b.1) Irreversible Breaking Junction
II.3.3.b.2) Reversible Breaking block junction
II.3.3.c) Main degradation (Figure 14-c)
II.3.3.d) Reversible cross-linking (Figure 14-d)
II.3.4) Dual-Stimuli responsive DDS
II.3.4.a) Photo- and pH-Responsive Micelles
II.3.4.b) Photo- and Thermo-Responsive Micelles
II.3.4.c) Multi-Responsive Micelle
II.4) Conclusion
III) Reversible-Deactivation Radical Polymerization techniques
III.1) Reversible-Addition Fragmentation chain Transfer (RAFT)
III.2) Nitroxide Mediated radical Polymerization (NMP)
III.3) Atom transfer radical polymerization
III.3.1) Mechanism of ATRP
III.3.2) Effect of transition metal
III.3.3) Effect of Ligand
III.3.4) Effect of Initiator case of (alkyl halide)
III.3.5) Development of ATRP technique
III.3.5.a) Activator Generated by Electron Transfer (AGET ATRP)
III.3.5.b) Activator ReGenerated by Electron Transfer (ARGET-ATRP)
III.3.5.c) Initiators for Continuous Activator Regeneration (ICAR) ATRP
III.3.5.d) Supplemental Activators and Reducing Agents (SARA ATRP)
III.3.5.e) Electrochemically induced ATRP (eATRP)
III.3.5.f) Photochemically induced ATRP (h􀏅 ATRP)
III.4) RDRP via outer Sphere Electron Transfer (SET) mechanism
III.4.1) How did Percec discover RDRP via outer Sphere Electron Transfer mechanism?
III.4.2) Various types of SET
III.4.2.1) Single-electron transfer degenerative chain transfer living radical polymerization (SET-DTLRP)
III.4.2.2) Single-Electron Transfer Living Radical Polymerization (SET-LRP)
III.4.2.2.1) Comparing SET-LRP and ATRP mechanisms
III.4.2.2.2) Factors affecting SET-LRP
III.4.2.2.2.1) Effect of zero-valent metal
III.4.2.2.2.2) Effect of solvent
III.4.2.2.2.3) Effect of Initiator
III.4.2.2.2.4) The effect of ligand
III.4.2.2.2.5) The effect of adding external CuBr2
III.4.2.2.2.6) The effect of inhibitor
III.4.2.2.3) Monomers
III.5) Conclusion
References
CHAPTER (II) LIGHT-SENSITIVE AMPHIPHILIC GLYCOPOLYMERS
I) Introduction
II) Synthesis of Photo-sensitive Homopolymer PNBA
III) Synthesis of Amphiphilic Light-Responsive Dextran-g-poly(o-nitrobenzyl acrylate) Glycopolymers
IV) Synthesis of Amphiphilic Light-Responsive Dextran-b-poly(o-nitrobenzyl acrylate)
Copolymers
CHAPTER (III) LIGHT-SENSITIVE NANOPARTICLES
I) Introduction
II) Elaboration and characterization of nanoparticles
II.1) Nanoprecipitation of Dex-g-PNBA
II.2) Emulsion/Organic Solvent Evaporation method
II.2.1) Surfactant properties of alkynated dextran
II.2.2) Formation of nanoparticles without or with an in situ CuAAC
III) Zeta potential and thickness of dextran shell
III.1) Zeta potential theory
III.2) Case of nanoparticles based on Dex-g-PNBA (FPNBA %= 75% and 85% ) prepared by
nanoprecipitation
III.3) Case of nanoparticles prepared via the emulsion/organic solvent evaporation
IV) Stability of nanoparticles
IV.1) Stability against salt
IV.2) Stability against SDS
V) Effect of UV-light
V.1) Light irradiation of PNBA
V.2) Light irradiation of nanoparticles made by nanoprecipitation
V.2.1) Evolution of nanoparticles chemistry versus irradiation
V.2.1.a) 1H NMR spectroscopy
V.2.1.b) FT-IR spectroscopy
V.2.1.c) pH-meter
V.2.1.d) UV-Vis spectroscopy
V.2.1.e) Conclusions
V.2.2) Selection of optimum experimental conditions using DLS
V.2.2.a) Effect of the medium
V.2.2.b) Mode of irradiation
V.2.2.c) Effect of dispersions concentrations
V.2.2.d) Effect of the UV-lamp power
V.2.2.e) Conclusions
V.2.3) Nile Red Release
V.2.3.a) Release of encapsulated Nile Red dye via diffusion
V.2.3.b) Release of Nile Red under irradiation
V.2.4) Effect of power lamp
V.3) Nanoparticles via Emulsion/Solvent Evaporation method
VI) What is the future of our smart DDS after injection and irradiation?
VII) Cytotoxicity test
VIII) Overall conclusions
References
CHAPTER (IV) MATERIALS AND EXPERIMENTAL TECHNIQUES
GENERAL CONCLUSION AND PERSPECTIVE

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *