(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
1.THE DIPOLAR 4-STATE POTTS MODEL
1.1 The Potts model
1.2 The dipolar 4-state Potts model
1.3 The dipolar 4-state Potts model : Infinite 1D chain
1.4 The dipolar 4-state Potts model : 2D square lattice
1.4.1 Numerical issues
1.4.2 Simple and 2 spins periodic configurations
1.4.3 Monte Carlo simulations
1.5 Finite lattice
1.6 Summary
2.MICROMAGNETISM
2.1 Micromagnetism introduction: contributions of Brown free energy
2.2 Micromagnetism as pathway to design artificial spin
2.2.1 The program code
2.2.2 The stability diagram of the monodomain state
2.2.3 Internal magnetic configurations
2.3 Validity of the dipolar approximation
2.4 Summary and perspectives
3.EXPERIMENTAL REALIZATION OF THE DIPOLAR 4-STATE MODEL
3.1 Sample preparation
3.1.1 The buffer
3.1.2 The iron deposition
3.1.3 The capping
3.2 Magnetometric study
3.2.1 Fe volumic anisotropy
3.2.2 Thermal stability
3.2.3 Magnetization versus Fe thickness
3.2.4 Interfaces anisotropy
3.3 Samples overview
3.4 Lattices and alpha definition
3.5 Nanofabrication
3.5.1 Ebeam lithography
3.5.2 Aluminum mask
3.5.3 Ionic etching
3.5.4 Dose optimization
3.6 Magnetic characterization and tip influence
3.6.1 Standard tip
3.6.2 Low moment tip
3.6.3 Low moment tip with spacer layer at surface sample
3.6.3.1 Spacer layer of PMMA
3.6.3.2 Spacer layer of Aluminum
3.7 Lattice distortion
3.8 Summary
4.DEMAGNETIZATION OF THE 4-SATES POTTS ARTIFICIAL SPINS
4.1 Pathway to fundamental state: the demagnetization
4.1.1 AC field demagnetization
4.1.1.1 Protocol
4.1.1.2 Efficiency
4.1.2 Thermal demagnetization
4.1.2.1 Protocol
4.1.2.2 Thermally induced magnetization reversal as a function of square size
4.1.2.3 Efficiency
4.1.2.3.1 Heating time influence
4.1.2.3.2 Temperature influence
5.EXPERIMENTAL DEMONSTRATION OF DIPOLAR 4-STATE POTTS MODEL: COUPLED POTTS SPINS LATTICE
5.1 Coupled Potts spin lattice: qualitative study
5.1.1 Magnetic configurations measured after field demagnetization
5.1.2 Magnetic configurations measured after thermal demagnetization
5.1.3 Thermal demagnetization performed after field demagnetization
5.2 Discussion: spins repartition and broken symmetry
5.3 Dipolar coupling effects
5.4 Comparison between demagnetization protocols
5.5 Some insights in the demagnetization process
5.6 Summary of the chapters 4 and 5
6.CONCLUSIONS AND PERSPECTIVES
6.1 Conclusions
6.2 Perspectives




