(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
A. Preface to the introduction
B. General context and global energy scenario
(i) The context of the energy transition
(ii) The global emission rates
(iii) The shift to renewable energy sources
C. Opportunity for hydrogen and the emergence of fuel cells
(i) Recognition of hydrogen
(ii) Emergence of the fuel cells
D. About proton exchange membrane fuel cells (PEMFCs) and the technology
(i) The PEM Fuel cell
(ii) Components of PEM fuel cells
(iii) Prospects and challenges of PEM fuel cells
E. Identifying the scope of the work and objectives
(i) The objectives identified are explained here as per their significance.
(ii) The layout of the thesis
1.1 The gas diffusion layer (GDLs)
1.1.1 The role of GDLs
1.1.2 GDL Manufacturing
1.1.3 Macro porous substrate (MPS)
1.1.4 Microporous layer (MPL)
1.1.5 Hydrophobic and hydrophilic treatments in GDLs
1.1.6 SGL nomenclature for the GDLs manufactured
1.2 Characteristics of GDLs
1.2.1 Porosity of GDLs
1.2.2 Gas permeability in GDLs
1.2.3 Anisotropy and tortuosity in GDLs
1.2.4 Structural strength of GDLs and clamping action on the cell assembly
1.2.5 Degradations in GDLs
1.3 Synthesis of few selected works in gas transport measurement and compression in GDLs
1.4 Conclusion to the chapter
2.1 Preface to the chapter
2.2 Measurement devices and experimental benches
2.2.1 The measurement ‘fundamental’ cell
2.2.2 The diffusion bridge measurement bench
2.2.3 Alterations in the cell
2.2.4 The developments made in the original bench
2.2.5 The wetting system: for permeability in presence of water
2.2.6 The real bi-polar plates of 25 cm2
2.2.7 The real bi-polar plates of 100 cm2
2.2.8 The fuel cell performance measurement bench
2.3 The GDLs used
2.4 Characterisation techniques and computer-based analysis
2.4.1 Chronopotentiometry (CP)
2.4.2 Scanning Electron Microscopy (SEM) for surface imaging
2.4.3 Mercury Intrusion Porosimeter (MIP)
2.4.4 Autodesk Interface
2.5 Data analysis approach
2.5.1 Lab-based study of GDL properties
2.5.2 Gas flow velocity in the cells used
2.5.3 Permeability estimations
2.6 Conclusion to the chapter
3.1 Preface to the chapter
3.2 The results obtained using the fundamental cell
3.2.1 Working conditions
3.2.2 Through-plane (TP) permeability estimation
3.2.3 In-plane (IP) permeability estimation
3.2.4 Permeability estimation for the MPL
3.3 The permeability results obtained using the real bi-polar plates
3.3.1 Working conditions
3.3.2 The equivalent permeability in the real bipolar plates (BPs)
3.3.3 The significance of the inertial flow and comparison between the cell patterns used 8
3.3.4 Comparison between 25 cm2 BPs with the fundamental cell
3.3.5 Comparison of equivalent permeability between 25 cm2 multiple channels and 100 cm2 parallel flow channel.
3.4 Conclusion to the chapter
4.1 Preface to the chapter
4.2 Permeability estimations using mixed dry and humidified gases
4.2.1 Working conditions for mixed dry gases
4.2.2 Directional and equivalent permeability estimations using mixed dry gases in the fundamental and 25 cm2 multi-channel cell.
4.2.3 Equivalent permeability in 25cm2 multi-channel BP with mixed gases
4.2.4 On the values for mixed gases in general
4.2.5 The validation of the pressure drop trend by imposing usage of different gases .
4.2.6 Working conditions for humidified gases
4.2.7 Through-plane and in-plane permeability estimations using humidified gases .
4.3 Permeability estimations in the presence of liquid water
4.3.1 Working conditions
4.3.2 Measuring the GDL capacities
4.3.3 Through-plane and in-plane permeability in the presence of liquid water
4.3.4 Through-plane permeability by forcing water through the MPL side of GDL
4.3.5 Permeability estimations with condensation approach
4.3.6 Comparison between wet and dry GDLs: tortuosity
4.4 Conclusion to the study
5.1 Preface to the chapter
5.2 Gas transport in GDLs under selected applied torque levels
5.2.1 The working conditions
5.2.2 Equivalent permeability values at selected applied torque levels
5.3 Electrochemical performance of GDLs under compression
5.3.1 Working conditions
5.3.2 Performance curves
5.4 Physical changes in the GDL morphology
5.4.1 Thickness and surface morphology
5.4.2 Effect on the pore size distribution
5.5 Compression analysis of GDL
5.5.1 Young Modulus (E) for GDL
5.5.2 For the simulations
5.5.3 The results for the different simulations on Autodesk Inventor
5.6 Conclusion to the chapter
General Conclusion
Recommendations
Reference
Appendix



