Non-alloyed Bimetallic Nanoparticles

somdn_product_page

(Downloads - 0)

Catégorie :

For more info about our services contact : help@bestpfe.com

Table of contents

CHAPTER 1 – INTRODUCTION
1.1 A Brief Overview
1.2 Problem Statements
1.3 Research Objectives
1.4 Scope of Study
1.5 Thesis Layout
1.6 References
CHAPTER 2 – LITERATURE REVIEW
2.1 Nanoparticles
2.2 Bimetallic Nanoparticles
2.2.1 Non-alloyed Bimetallic Nanoparticles
2.2.2 Alloyed Bimetallic Nanoparticles
2.2.3 Ensemble and Ligand Effects of Bimetallic Particles
2.3 Preparation of Catalysts
2.3.1 Classical Method
2.3.1.1 Precipitation Technique
2.3.1.2 Impregnation Technique
2.3.2 Non-classical Methods
2.3.2.1 Chemical Reduction
2.3.2.2 Microwave Reduction
2.3.2.3 Mechanical Attrition
2.4 Supports
2.4.1 Silicon (IV) Dioxide (SiO2)
2.4.2 MCM-41
2.5 Characterization Techniques
2.5.1 Temperature Programmed Reduction
2.5.2 Temperature Programmed Desorption
2.5.3 X-ray Diffraction
2.5.4 X-ray Photoelectron Spectroscopy
2.5.5 Transmission Electron Microscopy
2.6 Application
2.6.1 Energy
2.6.2 Environment
2.6.3 Industries
2.7 Bimetallic PtNi Nanoparticles
2.8 Benzene
2.8.1 Hydrogenation of Benzene
2.9 References
CHAPTER 3 – EXPERIMENTAL
3.1 Materials
3.2 Methods
3.2.1 Preparation of Stock Solutions
3.2.1.1 Pt/Ni Supported Crystalline Silica Catalysts
3.2.1.2 Pt/Ni Stabilized Oleic Acid (Pt/Ni-OA)
3.2.1.3 Pt/Ni –OA Supported Crystalline Silica  Catalysts (Pt/Ni-OA/Silica)
3.2.1.4 Pt/Ni Supported MCM-41 Catalysts (Pt/Ni-MCM)
3.2.2 Synthesis of Pt/Ni Supported Crystalline Silica via  Co-precipitation.
3.2.3 Synthesis of Pt/Ni Supported Crystalline Silica via
Co-impregnation
3.2.4 Synthesis of Pt/Ni Supported Crystalline Silica via
Step-impregnation
3.2.5 Synthesis of Pt/Ni Stabilized Oleic Acid Particles
3.2.5.1 Effect of Various Concentrations of Oleic Acid
3.2.5.2 Effect of Various Reaction Temperatures
3.2.6 Preparation of Pt/Ni-OA/Silica Catalysts
3.2.7 Preparation of Pt/Ni-MCM Catalysts via Non-classical
3.2.8 Preparation of Pt/Ni-MCM via Classical Methods
3.3 Characterization Techniques
3.3.1 H2-Temperature Reduction (H2-TPR)
3.3.2 H2-Chemisorption and H2-Temperature Desorption  (H2-TPD)
3.3.2.1 Non-classical Catalysts
3.3.2.2 Classical Catalysts
3.3.3 Temperature Programmed Surface Reaction (TPSR)
3.3.4 O2-Chemisorption
3.3.5 Transmission Electron Microscopy
3.3.6 Powder X-ray Diffraction
3.3.7 Fourier Transform Infrared (FTIR)
3.3.8 X-ray Photoelectron Spectroscopy (XPS)
3.4 Calculation Methods
3.4.1 Determination of Fractal Dimension
3.4.2 Determination of Metal Dispersion
3.4.2.1 Borodzinski and Banarowska Method
3.4.2.2 H2-Chemisorption Method
3.4.3 Total Surface Area of Metal Phase
3.4.4 Particle Size
3.4.4.1 H2-Chemisorption Method
3.4.4.2 XRD Technique
3.4.5 Degree of Reduction
3.5 Catalytic Reaction
3.6 Kinetic Studies
3.6.1 Determination of Reaction Orders
3.6.2 Determination of Energy of Activation
3.7 References
CHAPTER 4 – THE SYNTHESIS AND CATALYTIC PROPERTIES OF Pt/Ni SUPPORTED SILICA CATALYSTS PREPARED VIA NON-CLASSICAL METHODS
4.1 Introduction
4.2 Structural studies
4.3 Surface Characteristics
4.3.1 H2-TPR Profiles
4.3.2 H2-Chemisorption
4.3.3 H2-TPD Analysis
4.3.4 XPS
4.4 Effect of Borohydride Reduction
4.5 Hydrogenation of Benzene
4.6 Summary
4.7 References
CHAPTER 5 – EFFECT OF IMPREGNATION TECHNIQUE FOR CATALYSTS PREPARED VIA NONCLASSICAL METHODS
5.1 Introduction
5.2 Surface Characteristics
5.2.1 H2-TPR Analysis
5.2.2 H2-Chemisorption
5.2.3 H2-TPD Analysis
5.3 TEM Analysis
5.4 Catalytic Activity
5.5 Characteristics of Pt55Ni45-CI Catalyst
5.6 Summary
5.7 References
CHAPTER 6 – CATALYTIC STUDIES OF Pt/Ni STABILIZED OLEIC ACID BIMETALLIC PARTICLES INCORPORATED ONTO SILICA
6.1 Introduction
6.2 Formation of Pt/Ni Bimetallic Nanoparticles
6.3 Alloying of Pt/Ni Bimetallic Nanoparticles
6.4 Morphology
6.4.1 Effect of Oleic Acid Concentration
6.4.2 Effect of Reaction Temperature
6.5 Pt/Ni Interaction with Oleic Acid
6.6 Oleic Acid Stabilized Pt/Ni Deposited on Silica
6.6.1 Morphology of Active Phase in the Pt/Ni-OA/Silica  Catalysts
6.6.2 Surface Characteristics
6.6.2.1 H2-TPR Analysis
6.6.2.2 H2-Chemisorption
6.6.2.3 H2-TPD Analysis
6.6.3 Benzene Hydrogenation
6.7 Summary
6.8 References
CHAPTER 7 – EFFECT OF REDUCTION CONDITIONS
7.1 Introduction
7.2 H2-TPR Profiles
7.3 Effect of Reduction Temperature
7.4 Effect of NaBH4 Concentration
7.5 Effect of Reduction Medium
7.6 Comparison with Monometallic Catalysts at Optimum Conditions
7.7 Summary
7.8 References
CHAPTER 8 – Pt/Ni SUPPORTED MCM-41 CATALYSTS PREPARED VIA CLASSICAL METHODS
8.1 Introduction
8.2 Effect of Activation Conditions
8.3 O2-Chemisorption
8.4 Surface Characteristics
8.4.1 H2-TPR Analysis
8.4.2 H2-Chemisorption Studies
8.4.3 H2-TPD Profiles
8.5 Structural Properties
8.6 Morphological Studies
8.7 Catalytic Activity
8.8 Kinetic Investigations
8.9 Classical vs Non-classical Catalysts
8.10 Summary
8.11 References
CHAPTER 9 – CONCLUSIONS
9.1 Conclusion
9.2 Recommendations for Future Work
LIST OF PUBLICATIONS AND PRESENTATIONS
APPENDIX

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *