Physical vapor deposition (PVD)

somdn_product_page

(Downloads - 0)

For more info about our services contact : help@bestpfe.com

Table of contents

1 Introduction 
1.1 High Pressure Physics and the Diamond Anvil Cell
1.2 The Evolution of the Early Earth and the Composition of the Earth’s Core
1.3 Mineral Physics Constraints from X-Ray Diraction in a Diamond Anvil Cell
1.4 The Elastic Properties of Iron Alloys and their Measurement
2 Methods 
2.1 High Pressure Generation
2.1.1 Diamonds
2.1.2 Sample Preparation and Loading
2.1.3 Pressure Measurement
2.2 X-ray Diraction
2.2.1 Ambient Conditions X-ray Diraction
2.2.2 Synchrotron X-ray Diraction
2.2.3 Equations of State
2.3 Picosecond Acoustics
2.3.1 Compressional Sound Velocity and the Thermodynamics of Fe-alloys
2.3.2 Instrument
2.4 Prolometry
2.5 Scanning Electron Microscopy
2.6 Synthesis of Fe Alloys
2.6.1 Rapid Melt-Spinning
2.6.2 Physical Vapor Deposition
3 Velocity-density systematics of bcc and ‘bcc-like’ Fe-alloys 51
3.1 Ambient Pressure Behaviour of bcc and ‘bcc-like’ Fe-Si alloys
3.1.1 Crystal structure and unit cell volume of bcc and ‘bcc-like’
Fe-Si alloys at ambient pressure
3.1.2 Elastic properties of Fe-Si alloys at ambient pressure
3.2 Velocity-density systematics of bcc and ‘bcc-like’ Fe-alloys: Properties of Fe-Si alloys at High Pressures
3.2.1 EoS of bcc and ‘bcc-like’ Fe-Si alloys at high pressures .
3.2.2 Compressional velocity-density relations at high pressures .
3.2.3 Derivation of shear properties at high pressures for bcc-Fe-Si alloys
3.3 On the eects of Si ordering and Si content in bcc Fe-Si alloys
3.3.1 Shear and Bulk Moduli of Fe-Si alloys: Si ordering revisited .
3.3.2 Evolution of compressional and shear velocities with Si content at high pressures
4 On the hcp phase of Fe-Si alloys: Constraints on Earth’s core com- position and anisotropy 
4.1 On the bcc-hcp transition in Fe-Si alloys at high pressures
4.1.1 The bcc-hcp transition by X-ray Diraction
4.1.2 Elasticity in the vicinity of the bcc-hcp transition of Fe-Si alloys
4.1.3 XRD of Si-rich hcp alloys under quasihydrostatic conditions .
4.2 Velocity-Density Systematics of Fe-5wt.% Si at Extreme Conditions: Constraints on Si content in the Earth’s Inner Core
4.2.1 Velocity-Density Systematics of Fe-5wt%Si at Extreme Conditions
4.2.2 Shear velocities and derived quantities
4.2.3 The Inuence of Thermoelastic Parameters on Theory and Experiment
4.3 High pressure behaviour of PVD hcp Fe-Si alloys
4.4 Eect of Ni alloying in Fe-Ni-Si alloys and the c/a axial ratios of hcp
Fe-Si and Fe-Ni-Si alloys at high P-T conditions.
4.4.1 The eect of Ni on dilute Fe-Si alloys at high P-T conditions .
4.4.2 c/a axial ratios of Fe-Si and Fe-Ni-Si alloys at high pressures and high temperatures
5 Conclusions 
6 Bibliography 
A Other technical aspects of Picosecond Acoustic measurements 
A.1 Further Experimental Details of Picosecond Acoustics
A.2 Sample Preparation and Technical Observations
A.2.1 Sample Preparation: Sample Loading and General Observations
A.2.2 Instrument Setting Tests
A.2.3 Deformation Tests
A.3 Error Analysis
B Benchmarking Velocity Measurements at High Pressures via Pi- cosecond Acoustics 
B.1 Eects of non-hydrostatic stress on PA measurements
B.1.1 Eect of PTM on PA measurements
B.1.2 Non-hydrostatic eects due to sample-gasket contact
B.2 On IXS and NRIXS as high pressure sound velocity measurement techniques
C Tabulated Datasets 
C.1 Foreword
C.2 Fe5Si
C.3 Fe5Ni5Si
C.4 Fe8Si
C.5 Fe10Si
C.6 Fe12Si
C.7 Fe17Si

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *