(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
1 The lead-acid battery
1.1 Electric energy accumulation
1.2 IIistory of the lead-acid battery
1.3 Principle
1.4 The electrochemical system « lead-acid battery »
1.4.1 General considerations
1.4.2 Secondary reactions
1.5 Different designs of the lead-acid battery
1.5.1 Flooded battery
1.5.2 VRLA battery
1.5.3 Bipolar lead-acid battery
1.5.4 Different designs of lead-acid batteries
1.6 Life limiting factors
1.6.1 Drying out
1.6.2 Short circuits
1.6.3 Sulphation
1.6.4 Thennal runaway
1.6.5 Stratification
1.6.6 Failure ofthe positive electrode
1.6.7 Failure of the negative electrode
1.7 Different ways for the improvement ofthe lead-acid battery
1.7.1 Design
1.7.2 Composition and characteristics of the active materials
1.8 Conclusion about possible improvements ofthe lead-acid battery
2 Experimental techniques
2.1 Electrical tests on batteries
2.1.1 InternaI resistance, open circuit voltage, peak power (IROCVP test)
2.1.2 ECE 15 test
2.1.3 Cycling test.
2.1.4 Dependence of the discharge capacity on the discharge current
2.2 Preparation of polished sections
2.3 Microscopy
2.3.1 Optical microscopy
2.3.2 Scanning Electron Microscopy
2.3.3 Microprobe Analysis
2.4 Chemical analysis and electrolyte concentration
2.5 Porosimetry
2.6 X-ray diffraction
2.7 IR pictures
2.8 Electrochemical techniques
2.8.1 Cyclic voltammetry
2.8.2 Potentiostatic corrosion measurement
2.8.3 Galvanostatic corrosion measurement
3 Mechanical pressure application
3.1 Bibliography of « compression »
3.2 Electrolyte immobilisation/separation systems
3.2.1 The complex influence of a passive part: the separator
3.2.2 Ge1.
3.2.3 AGM
3.2.4 The new Acid Jellying Separator (AJS)
3.2.5 More than compression
3.3 Performance improvement through EMPA
3.3.1 Experimental conditions
3.3.2 Parameter test
3.3.3 Cycling life
3.3.4 Conclusion about the electrical tests
3.4 Mechanical pressure development during one cycle
3.4.1 Typical evolution of the mechanical pressure
3.4.2 Increase of the mechanical pressure during discharge
3.4.3 Evolution of the mechanical pressure during charge
3.4.4 Influence of the separation system
3.4.5 Influence of the initial mechanical pressure
3.4.6 Behaviour for a battery
3.4.7 Conclusion about the mechanical pressure evolution during one cycle
3.5 Evolution ofthe mechanical pressure over cycling life
3.5.1 Variation ofmechanical pressure between beginning and end of discharge
3.5.2 Increase ofmechanical pressure between the beginning and the end of one cycle
3.6 How does EMPA affect the performance of the lead-acid battery
3.6.1 Changes in the structure ofthe negative electrode
3.6.2 Post mortem analysis ofthe positive electrode
3.6.3 Models describing the positive active material
3.6.4 Why mechanical pressure application increases the life ofthe positive active material.
3.7 Conclusion about mechanical pressure application on the lead-acid cell l0l
3.7. 1 Mechanical pressure variation on the cell walls
3.7.2 Structural changes in the negative electrode
3.7.3 Structural changes in the positive electrode
3.7.4 How does mechanical pressure application improve the life of the lead-acid battery
3.7.5 Importance ofthe separator « .. , ,~j.:,< (, r’I.’. »’L’,~-~’ t, .(~ »~ ·(‘if\~’4c:\(1
3.7.6 Perspectives
4 Corrosion
4.1 Generais about corrosion oflead and lead aUoys
4.1.1 Definition
4.1.2 When does corrosion occur
4.1.3 The corrosion layer on the positive lead grid
4.1.4 Effect of the active material on the corrosion
4.1.5 Conclusion of the literature study on corrosion
4.1.6 Effect of antimony
4.2 Effect of mechanical pressure on corrosion
4.2.1 Corrosion measurement under potentiostatic conditions
4.2.2 Mechanical stabilisation of the plate stack with the AJS separator
4.2.3 Observation of grids after cycling
4.2.4 Conclusion about the effect ofmechanical pressure on the positive grid corrosion
5 Phosphoric acid
5.1 Bibliography of the phosphoric acid
5.2 Results concerning the influence of phosphoric acid
5.2.1 Cyclic voltammetry on pure lead
5.2.2 Phosphoric acid and electrical performance
5.2.3 Mechanical pressure and the effect ofphosphoric acid
5.2.4 Effect ofphosphoric acid on the potential ofpasted electrodes
5.2.5 Phosphoric acid and gas formation
5.2.6 Oxidative effect ofphosphoric acid
5.2.7 Phosphoric acid and corrosion
5.2.8 Structural changes in the positive active material due to phosphoric acid
5.3 Conclusion about the effect of phosphoric acid
6 Oxygen cycle
6.1 Observation ofthe gas effects trough mechanical pressure recording
6.1.1 Mechanical pressure during one charge
6.1.2 Evolution over life of the gas effects
6.2 Recombination efficiency
6.2.1 Current repartition and recombination efficiency determination
6.2.2 Recombination efficiency ofan AJS cell.
6.3 Transfer of oxygen from the positive electrode to the negative electrode
6.3.1 IR pictures for the determination of the recombination sites
6.3.2 Oxygen transfer trough the AJS separator
6.4 Conclusion about the oxygen cycle
General conclusion
Achievements of this Ph.D. work
Perspectives
Towards sustainable development
References



