(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
Chapter 1 Literature review
1.1 Solidification and its macroscopic modeling
1.1.1 Macrosegregation
1.1.2 Volume averaging method
1.1.3 Microscopic modeling
1.1.4 Macroscopic modeling
1.1.5 Coupling micro/macro modeling: Operator-splitting method for the solution of the coupled equations
1.2 Rotating fluids and centrifugal casting
1.2.1 Solidification in centrifugal conditions
1.2.2 Rotating reference frame: Apparition of centrifugal and Coriolis
1.3 Objectives
1.4 Summary
Chapter 2 Solidification model for centrifugal casting
2.1 Eulerian derivation of Navier-Stokes equations in a rotating reference frame
2.2 Derivation of scalar conservation equation
2.3 Derivation of momentum conservation equations
2.4 Summary
Chapter 3 Thermosolutal buoyancy convection and macrosegregation during solidification in a centrifugated system
3.1 Simplified model for solidification modeling
3.1.1 Validation
3.2 Simulation of TiAl samples solidified in the “Large Diameter Centrifuge” (LDC)
3.2.1 Furnace thermal protocol
3.2.2 Solidification path and alloy phase diagram
3.2.3 Numerical setup
3.3 Results and discussion
3.3.1 Furnace thermal protocol: Temperature field and heat transfer
3.3.2 Liquid flow
3.3.3 Aluminum macrosegregation
3.3.4 Comparison with aluminum measurements
3.4 Summary
Chapter 4 Equiaxed grain motion and grain growth kinetics
4.1 Macroscopic conservation equations
4.1.1 Mass balance of phase k
4.1.2 On the coupling of enthalpy, temperature and solid fraction
4.1.3 Momentum conservation and mass conservation equations
4.1.4 Other macroscopic conservation equations
4.1.5 Validation of the transport model in macroS3D
4.2 Microscopic modeling in macroS3D
4.2.1 Grain growth kinetics
4.2.2 Grain nucleation and nuclei re-injection
4.2.3 Validation of the microscopic modeling in macroS3D
4.3 Coupling of macroscopic conservation equations with microscopic modeling
4.3.1 Validation of the multiscale modelling in macroS3D: The Hebditch and Hunt case
4.4 Simulations of the GRADECET experiments
4.4.1 Results and discussion
4.5 Summary
General conclusions and perspectives
4.6 Perspectives
Appendix A Thermophysical properties
A.1 Validation
A.1.1 Thermophysical properties: Pb-18wt.%Sn alloy
A.1.2 Thermophysical properties: water/glycerol mixture for the rotating annulus case
A.1.3 Thermophysical properties: Sedimentation column and Hebditch-Hunt benchmark cases (Sn-5wt.%Pb)
A.1.4 Thermophysical properties: cases of solidification of an unitary control volume (Al-5wt.%Si)
List of Tables
List of Figures
Bibliography




