Radar/radiometer antennas

somdn_product_page

(Downloads - 0)

For more info about our services contact : help@bestpfe.com

Table of contents

1 Saturn’s icy satellites: discovery and exploration 
1.1 First discoveries
1.2 Spacecraft exploration
1.2.1 Before Cassini
1.2.2 The Cassini-Huygens mission
1.2.3 After Cassini
1.3 A variety of worlds
1.4 Outer system satellites: Phoebe, Iapetus, and Hyperion
1.4.1 Phoebe
1.4.2 Iapetus
1.4.3 Hyperion
1.5 Inner mid-sized icy satellites
1.5.1 Rhea
1.5.2 Dione
1.5.3 Tethys
1.5.4 Enceladus
1.5.5 Mimas
1.6 Inner icy satellite formation and age
1.7 Icy satellite surface processes
1.8 Conclusion
2 Microwave remote sensing: from theory to icy satellite observations 
2.1 Principles of microwave remote sensing
2.1.1 Advantages of microwave remote sensing
2.1.2 Radar/radiometer antennas
2.2 Interactions of microwaves with matter
2.2.1 Medium electromagnetic properties
2.2.2 Electromagnetic waves in a homogeneous medium
2.2.3 Wave reflection and transmission
2.2.4 Wave scattering
2.2.5 Subsurface scattering
2.3 Radars for planetary exploration
2.3.1 Types of radars used in planetary exploration
2.3.2 Fundamental radar equation
2.3.3 Radar albedo
2.4 Microwave radiometry
2.4.1 Planetary exploration with microwave radiometry
2.4.2 Thermal emission from a surface and near subsurface
2.4.3 Microwave radiometers
2.5 Icy satellite microwave observations
2.5.1 Icy Galilean satellites: radiometry observations
2.5.2 Galilean satellites: radar observations
2.5.3 Galilean satellites: future microwave exploration
2.5.4 Titan radar/radiometry observations
2.5.5 Saturn’s icy satellite radar/radiometry observations
3 Saturn’s icy satellites seen by the Cassini radar 
3.1 The radar/radiometer on the Cassini spacecraft
3.1.1 Characteristics
3.1.2 Observation strategy
3.1.3 Observation geometry recalculation
3.2 Distant radar observations: Disk-integrated radar albedos
3.2.1 Observations and derivation of the disk-integrated radar albedo
3.2.2 Results
3.3 Resolved radar observations: scatterometry
3.3.1 Observations
3.3.2 Data reduction
3.3.3 Results
3.4 Interpretations
3.4.1 Radar albedo and water ice purity
3.4.2 Interactions with Saturn’s E ring
3.4.3 Structure of the regoliths
4 Saturn’s icy satellites seen by the Cassini radiometer 
4.1 Observations
4.2 Calibration
4.2.1 Radiometry calibration
4.2.2 Removal of the far sidelobe contribution
4.2.3 Determination of the baseline offset
4.2.4 Pointing and time offset correction
4.2.5 Measurement uncertainties
4.3 Preliminary analysis: disk-integrated temperatures
4.3.1 Extraction of disk-integrated temperatures
4.3.2 Results
4.4 Towards a resolved analysis: deconvolution
4.4.1 Deconvolution method
4.4.2 Deconvolution results
4.5 Conclusion
5 Simulation of microwave radiometry observations 
5.1 Thermal model
5.1.1 Incident flux
5.1.2 Derivation of the temperature profile below the surface
5.1.3 Model parameters
5.1.4 Model outputs
5.2 Radiative transfer model
5.2.1 Model hypotheses
5.2.2 Calculating the effective temperature Te f f
5.2.3 Model parameters
5.2.4 Numerical application
5.2.5 Model outputs
5.3 Emissivity model
5.3.1 Combined emissivity-backscatter model
5.3.2 Model parameters
5.3.3 Application to Rhea, Dione, and Iapetus
5.4 Simulating the antenna temperature
5.4.1 Obtaining the brightness temperature
5.4.2 Convolution with the beam pattern
5.4.3 Data fitting method
5.4.4 Deriving subsurface thermal, physical, and compositional properties
5.4.5 Application to Rhea, Dione, and Iapetus
5.4.6 Model limitations
5.5 Conclusion
6 Derivation of thermal, physical, and compositional subsurface properties from Cassini radiometry
6.1 Disk-integrated emissivities
6.1.1 Method
6.1.2 Application to Iapetus
6.1.3 Application to Enceladus
6.1.4 Application to Dione
6.1.5 Application to Rhea
6.2 Thermal, structural, and compositional properties of Rhea’s subsurface
6.2.1 Method
6.2.2 Results
6.2.3 Interpretations and discussion
6.2.4 Summary and conclusion
6.3 Preliminary results for Dione
6.3.1 Method
6.3.2 Results
6.3.3 Preliminary interpretations
6.4 Preliminary results for Iapetus
6.4.1 Method
6.4.2 Results
6.4.3 Preliminary interpretations
6.5 Conclusion
7 Radiotelescope observations of Iapetus and Phoebe
7.1 The hemispherical dichotomy of Iapetus in the microwaves
7.1.1 Radar observations
7.1.2 Ground-based microwave radiometry
7.1.3 Iapetus ground-based radiometry: pre-existing observations and interpretations
7.1.4 Outstanding questions and motivations for the present study
7.2 Disk-integrated observations of Iapetus from the IRAM 30 meter telescope
7.2.1 The NIKA2 camera on the IRAM 30-meter telescope
7.2.2 Observation strategy
7.2.3 Calibration and flux derivation
7.2.4 Results
7.3 Observations of Iapetus and Phoebe from the VLA
7.3.1 The Karl G. Jansky Very Large Array (VLA) interferometer
7.3.2 Observations and calibration
7.3.3 Results
7.4 Discussion and interpretations
7.4.1 The LH and TH microwave spectra of Iapetus
7.4.2 Comparison with a thermal model
7.4.3 Emissivity variations with wavelength
7.5 Conclusion and perspectives
7.5.1 Future observations
7.5.2 Towards a resolved analysis of VLA observations
7.5.3 Need for a multi-layer thermal model
7.5.4 Emissivity modeling

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *