(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
ACKNOWLEDGEMENTS
SUMMARY
RÉSUMÉ (Français)
TABLE OF ABBREVIATIONS
INTRODUCTION
I – Brain oscillations, local and network synchronization and orienting spatial attention .
I.1 – Oscillations and synchronization in network communication and information transfer
I.2 – Network synchronization subtending visuo-spatial attention and visual perception
II – Manipulation of brain oscillations subtending attentional and visual behaviors
II.1 – Non-invasive stimulation techniques to manipulate brain oscillations and synchrony
II.1.1 – Rhythmic peripheral sensory stimulation for oscillatory entrainment
II.1.2 – Transcranial brain stimulation technologies for oscillatory entrainment
II.2 – Rhythmic Transcranial Magnetic Stimulation in attentional and visual behaviors
II.3 – Rhythmic Transcranial Magnetic Stimulation in neuropsychiatric rehabilitation
III – Neural noise, stochastic resonance and the modulation of visual perception
III.1 – Cognitive impairments associated to abnormal oscillations and synchrony
III.2 – Stochastic Resonance Theory, modulation of neural coding and information processing
III.3 – Neural noise and Stochastic Resonance in the modulation of perception
REFERENCES
SPECIFIC AIMS
GENERAL METHODS
I – Behavioral paradigm to assess visual performance
I.1 – Near-threshold lateralized visual detection paradigm
I.2 – Visual target properties, features and titration procedures
I.3 – Experimental blocks and session organization
I.4 – Subjective and objective measures of perception
I.5 – Signal Detection Theory and visual performance outcome measures
II – Transcranial Magnetic Stimulation
II.1 – Stimulation parameters
II.2 – Design of rhythmic and random TMS patterns
II.3 – Cortical target selection and MRI-based frameless neuronavigation
III – Concurrent TMS-EEG recordings of brain activity
III.1 – Electromagnetic TMS-EEG artifact removal and data cleaning procedures
III.2 – Concurrent TMS-EEG recordings and EEG data pre-processing
III.3 – Control analysis on the TMS-EEG artifact removal and data cleaning procedures
III.4 – Outcome measures to assess the impact of TMS on oscillatory activity
III.4.1 – Outcome measures for local oscillatory activity
III.4.2 – Outcome measures for inter-regional network synchronization
III.5 Outcome measures to quantify and characterize noise in EEG datasets
III.5.1. Measures to characterize noise in the time-frequency domain
III.5.2. Measures to characterize noise in the time domain
III.6 – Cluster-based permutation tests for the correction of multiple comparisons
REFERENCES
PROJECT 1: Causal role of high-beta oscillations in the right fronto-parietal network for conscious visual detection
I – Entrainment of local synchrony reveals a causal role for high-beta right frontal oscillations in human visual consciousness
II – Causal role of high-beta right fronto-parietal synchrony in the modulation of human conscious visual perception
PROJECT 2: Exploring unexpected contributions of left frontal neural noise to the modulation of conscious visual perception in the human brain: a combined TMS-EEG study
PROJECT 3: Non-specific effects of auditory stimulation generated by transcranial magnetic stimulation (TMS) on cortical oscillations and visual detection performances
GENERAL DISCUSSION
I – Summary of the main results
II – Frontal and fronto-parietal contributions to the modulation of visual perception
II.1 – Interhemispheric asymmetries in top-down systems for the facilitation of visual performance
II.2 – Methodological limitations of our datasets and experimental approaches
II.3 – Modulating visuo-spatial attention and recording conscious visual perception
III- Pending questions and some future directions
III.1 – Towards an oscillatory model of attentional orienting and perceptual modulation
III.2 – Contributions of parietal and occipital cortices to conscious perception
IV- Further considerations
IV.1 – Unexpected impact of ‘control’ TMS patterns on EEG activity
IV.2 – Network impact and state dependency of frequency-tailored TMS effects
V- Conclusion and final remarks
REFERENCES




