(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
Chapter 1: INTRODUCTION
1.1 The mouse visual system
1.1.1 Some considerations on sensory system and vision
1.1.2 Architecture and properties of the mouse visual system
1.1.2.1 The retina: first element of the chain
1.1.2.2 The dorso lateral geniculate nucleus: relay between the eye and the cortex
1.1.2.3 The primary visual cortex: first cortical level of visual processing
1.2 Cortical plasticity – Experience-dependent visual plasticity
1.2.1 Critical period of plasticity
1.2.2 Ocular dominance plasticity as a model to study experience-dependent plasticity
1.2.3 Cellular, molecular and structural mechanisms of critical period
1.2.3.1 Role of inhibition
1.2.3.2 Mechanisms of ocular dominance plasticity at the circuit level
1.2.4 Adult plasticity and the reopening of windows of plasticity
1.3 Extracellular matrix and Perineuronal Nets
1.3.1 Extracellular matrix in the central nervous system
1.3.2 Perineuronal Nets
1.3.2.1 Overview
1.3.2.2 Molecular and structural organization of PNNs
1.3.2.3 Formation and development of PNNs
1.3.3 Roles of perineuronal nets
1.4 Why looking at layer 4 of primary visual cortex?
1.5 Aim of the study
Chapter II: MATERIALS AND METHODS
2.1 Animals
2.2 In vivo enzymatic degradation of PNNs in V1
2.3 In vivo expression of the light-sensitive channel ChR2 in the dLGN
2.4 Sensory deprivation in adult mice by monocular deprivation
2.5 Preparation of acute slices for electrophysiology
2.6 Electrophysiology and optogenetic stimulation
2.7 In vivo recordings
2.8 Immunohistochemistry
2.9 Data analysis
2.10 Statistical tests
Chapter III: RESULTS
3.1 In vivo enzymatic removal of PNN in V1 of adult mice
3.2 PNN removal alters the visual gain adaptation curve in vivo, and increases the power of visually-evoked oscillations
3.3 Developmental changes of firing dynamics and passive properties of PV cells and PNs
3.3.1 Developmental changes
3.3.2 Firing dynamics and passive properties are not altered by PNN removal
3.4 Developmental changes of action potential waveform of both cell types. No apparent effect induced by disruption of PNNs
3.5 Developmental maturation of synaptic transmission onto PV cells and PNs, and alterations induced by PNN digestion
3.5.1 Development of glutamatergic transmission onto L4 neurons and effects of PNN removal
3.5.2 Development of GABAergic transmission onto L4 neurons and effects of PNN removal
3.5.3 Effects of PNN removal on quantal synaptic transmission onto PV cells
3.6 Does monocular deprivation alter the E/I balance after PNN removal?
3.6.1 Firing dynamics, passive properties and action potential shape are not altered
3.6.2 Effects of monocular deprivation on synaptic transmission onto PV cells and PNs following enzymatic PNN removal in adult mice
3.7 PNN removal does not alter unitary GABAergic connections in L4
3.8 In vivo expression of the light-sensitive channel ChR2 in the dLGN. Double injections
3.9 PNN disruption increases thalamocortical glutamatergic synapses specifically onto PV cells
3.10 PNN disruption increases thalamocortical feed-forward inhibition onto PV cells
Chapter IV: DISCUSSION


