(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
Chapter I: Introduction
I.1.Fundamentals of supercapacitors (SCs)
I.1.1. Electrical double layer capacitors (EDLCs)
I.1.2. Pseudocapacitors
I.1.3. SC capacitance, energy and power density
I.2.Challenges and applications of SCs
I.3. Electrode materials
I.3.1. Carbon materials
I.3.2.Conducting polymers (CPs)
I.3.3.Transition metal oxides
I.4.Evaluation tools for SC electrode materials
I.4.1. Cyclic Voltammetry (CV)
I.4.2. Galvanostatic Charge Discharge (GCD)
I.4.3. Electrochemical Impedance Spectroscopy (EIS)
I.4.4. Electrical Quartz crystal microbalance (EQCM)
I.4.5. Ac electrogravimetry
I.4.6. Electroacoustic measurements
I.5.Objectives and outline of the thesis
Chapter II:Experimental procedures
II.1. Materials characterization techniques
II.1.1. Fourier transform infrared (FTIR) spectroscopy
II.1.2. Ultraviolet-visible (UV-vis) spectroscopy
II.1.3. Scanning electron microscopy (SEM)
II.1.4. X-ray diffraction (XRD)
II.1.5. X-ray photoelectron spectroscopy (XPS)
II.2. Electrochemical and electrogravimetric characterization
II.2.1. Electrochemical quartz crystal microbalance (EQCM)
II.2.2. Ac-electrogravimetry
II.3. Electroacoustic impedance measurement
Chapter III: Electrochemical and viscoelastic evolution of dodecyl sulfate doped polypyrrole films during electrochemical cycling
III.1. Preamble and Objectives
III.2.Experimental Methods and Theoretical Background
III.2.1. Film preparation and characterization
III.2.2. Electrogravimetric measurements
III.2.3. Electroacoustic impedance measurements
III.3. Results and Discussion
III.3.1. Cyclic electrogravimetric behavior
III.3.2. Ac electrogravimetric investigations
III.3.3. Viscoelastic property changes upon film aging
III.4. Conclusions
Chapter IV: Tuning charge storage properties of reduced graphene oxides evidenced by in situ gra vimetric and viscoelastic explorations and viscoelastic explorations
IV.1. Preamble and Objectives
IV.2. Experimental Methods and Theoretical BackgroundExperimental Methods and Theoretical Background
IV.2.1. Synthesis of ERGO electrodes and structural characterization
IV.2.1. Synthesis of ERGO electrodes and structural characterization
IV.2.2. Electroacoustic impedance
IV.2.2. Electroacoustic impedance measurementsmeasurements
IV.2.3. Electrogravimetric measurements
IV.2.3. Electrogravimetric measurements
IV.3. Results and Discussion
IV.3.1. Morphology and structure of ERGO electrodes
IV.3.1. Morphology and structure of ERGO electrodes
IV.3.2. Viscoelasticity of ERGO electrodes and its influence on electrogravimetric performance
IV.3.2. Viscoelasticity of ERGO electrodes and its influence on electrogravimetric performance
IV.3.3. Cyclic electrogravimetric behavior.3.3. Cyclic electrogravimetric behavior
IV.3.4. AcAc–electrogravimetric investigationselectrogravimetric investigations
IV.4. Conclusions
Chapter V: Tracking interfacial charge transfer behavior of hydrothermally synthesized ZnO nanostructures via complementary electrogravinanostructures via complementary electrogravimetric methodsmetric methods
V.1. Preamble and Objectives
V.2. Experimental Methods and Theoretical Background
V.2.1. Electrode preparation and characterization
V.2.2. Theoretical considerations for acac–electrogravimetryelectrogravimetry
V.3. Results and DiscussionDiscussion
V.3.1. Cyclic Electrogravimetry (EQCM) and QCM–coupled GCD:coupled GCD:
V.3.2. QCM–coupled to Electrochemical Impedance Spectroscopy (coupled to Electrochemical Impedance Spectroscopy (AcAc–electrogravimetry)electrogravimetry)
V.3.3. Comparison of the EQCM and AcAc–electrogravimerty mass responseselectrogravimerty mass responses
V.4. ConclusionsConclusions
Chapter VI: Reduced graphene oxide–sheltered ZnO nanosctructures showing enhanced electrochemical sheltered ZnO nanosctructures showing enhanced electrochemical performance revealed by an in situ electrogravimetric studyperformance revealed by an in situ electrogravimetric study
VI.1. Preamble and Objectives
V.2. Experimental Methods and Theoretical BackgroundBackground
VI.2.1. Synthesis of ZnO seed layer
VI.2.2. Synthesis of ZnO nanostructures
VI.2.3. Preparation procedures for ZnO@ERGO electrode
VI.2.4. Morphological observation of the electrode
VI.2.5. Complementary electrogravimetric characterizations (EQCM and acelectrogravimetric characterizations (EQCM and ac–electrogravimetry)electrogravimetry)
VI.3. Results and Discussion




