Solid state NMR

somdn_product_page

(Downloads - 0)

Catégorie :

For more info about our services contact : help@bestpfe.com

Table of contents

Acknowledgments
Abbreviations
Table of contents
INTRODUCTION
Bibliography (Introduction)
CHAPTER I: STATE OF THE ART ON NHC-STABILIZED GOLD NANOPARTICLES
I.A. Gold nanoparticles
I.B. N-heterocyclic carbenes
I.C. Gold nanoparticles stabilized by N-heterocyclic carbenes
I.C.1. Ligand exchange
I.C.2. NHC-gold complex reduction
I.C.3. Imidazolium gold complex reduction
I.D. Conclusion
Bibliography (Chapter I)
CHAPTER II: SYNTHESIS OF N-HETEROCYCLIC CARBENE-CAPPED GOLD NANOPARTICLES FROM IMIDAZOLIUM SALTS
II.A. Nanoparticles from imidazolium haloaurate salts and NaBH4
II.A.1. Imidazolium haloaurate salts
II.A.1.a. Synthesis
II.A.1.b. Crystallographic analysis
II.A.2. Nanoparticles synthesis
II.A.2.a. Synthesis with NaH
II.A.2.a.i. Effect of the ligand
II.A.2.a.ii. Effect of the ligand to gold ratio
II.A.2.b. Synthesis without NaH
II.A.2.b.i. Effect of the ligand
II.A.2.b.ii. Effect of the ligand to gold ratio
II.A.3. Surface analysis
II.A.3.a. MS analysis
II.A.3.b. NMR analysis
II.A.3.b.i. Liquid state NMR
II.A.3.b.ii. Solid state NMR
II.A.3.c. IR analysis
II.A.3.d. XPS analysis
II.B. Nanoparticles from imidazolium haloaurate salts and tBuNH2BH3
II.B.1. Synthesis of the nanoparticles
II.B.2. XPS analysis
II.C. Nanoparticles from AuCl and unfunctionalized imidazolium salts
II.C.1. Using NaBH4 as a reducing agent
II.C.2. Using tBuNH2BH3 as a reducing agent
II.D. Nanoparticle synthesis from functionalized imidazoliums
II.D.1. Water-soluble imidazolium
II.D.2. Azide functionalized imidaozlium
II.D.3. C2-functionalized imidazoliums
III.D.3.a. 2-methylimidazolium
II.D.3.b. 2-phenyl imidazolium
II.D.3.c. C2 functionalized imidazoliums and tBuNH2BH3 as a reducing agent
II.E. Conclusion
CHAPTER III: SYNTHESIS OF N-HETEROCYCLIC CARBENE-CAPPED GOLD NANOPARTICLES FROM NHC-BORANES
III.A. Bibliographic introduction on N-heterocyclic carbene boranes
III.A.1. Synthesis of NHC-boranes
III.A.2. Uses of NHC-boranes in molecular chemistry
III.A.2.a. Heterolytic rupture
III.A.2.b. Homolytic rupture
III.A.3. Uses of NHC-boranes beyond molecular chemistry
III.B. NHC-BH3 synthesis
III.C. Nanoparticles synthesis from gold precursor: AuClPPh3
III.C.1. First attempts
III.C.2. Solvent screening
III.D. Nanoparticles synthesis from gold precursor HAuCl4.3H2O
III.E. Nanoparticles synthesis from gold precursor AuClSMe2
III.E.1. Reaction conditions effect
III.E.1.a. Solvent
III.E.1.b. Water
III.E.1.c. Ligand to gold ratio
III.E.1.d. Concentration
III.E.1.e. Stirring
III.E.1.f. Temperature
III.E.2. Surface characterization
III.E.2.a. MS
III.E.2.b. NMR
III.E.2.c. XPS
III.E.3. Mechanistic study
III.E.3.a. NMR
III.E.3.c. Theoretical chemistry
III.E.3.c.i. Hydride transfer
III.E.3.c.ii. Radical mechanism
III.E.3.d. EPR
III.E.3.e. Discussion
III.E.4. Reproducibility issues
III.E.4.a. Silica
III.E.4.b. Byproduct from the NHC-BH3 synthesis
III.E.4.c. Byproduct from the imidazolium synthesis
III.E.5.d. Dimer
III.F. Conclusion
CHAPTER IV: SYNTHESIS OF MESOIONIC CARBENE-CAPPED GOLD NANOPARTICLES FROM TRIAZOLIUM SALTS AND MIC-BH3
IV.A Mesoionic carbenes in the literature
IV.B. Gold nanoparticles stabilized by MICs from triazolium salts
IV.B.1. Synthesis of the triazolium salts precursors
IV.B.2. Gold nanoparticle synthesis from triazolium salts
IV.B.3. XPS analysis
IV.C. Gold nanoparticles stabilized by MICs from MIC-BH3
IV.C.1. MIC-BH3 in the literature
IV.C.2. Synthesis of MIC-BH3
IV.C.3. Gold nanoparticle synthesis using AuClSMe2 as a precursor
IV.C.4. Gold nanoparticle synthesis using HAuCl4.3H2O as a precursor
IV.C.5. XPS analysis
IV.D. Conclusion
Bibliography (Chapter IV)

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *