(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
Chapter 1. Introduction
1.1. Les surfaces de translation
1.2. Espaces des modules de courbes
1.3. Anneaux tautologiques
1.4. Stratification des espaces des modules de courbes stables
1.5. Stratification des espaces de différentielles
1.6. Différentielles d’ordres supérieurs et classes de Prym-Tyurin
1.7. Nombres d’Hurwitz
1.8. Cycles de double ramification
Chapter 2. Cohomology classes of strata of differentials
2.1. Different formulations of the problem
2.2. Stable differentials
2.3. The induction formula
2.4. Examples of computation
2.5. Relations in the Picard group of the strata
Chapter 3. Prym-Tyurin classes and loci of degenerate differentials
3.1. Prym-Tyurin classes
3.2. Space of admissible n-differentials
3.3. Bergman tau function and Hodge class on PM
3.4. An alternative computation of deg
3.5. Prym-Tyurin differentials on b C and holomorphic n-differentials on C
Chapter 4. Hurwitz numbers and intersection in spaces of differentials
4.1. Some families of Hurwitz numbers
4.2. From stable differentials to stable maps
4.3. End of the proof of Theorem 4.1.8
4.4. Completed cycles
Chapter 5. Double ramification cycles and strata of differentials
5.1. Moduli space of r-spin structures
5.2. Double Ramification cycles
5.3. Twisted canonical divisors
Appendix A. Algebraic Stacks
A.1. Sites and sheaves
A.2. Stacks
A.3. Moduli spaces of curves
Bibliography




