(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
Chapter I Green Wood Plastic Composites
I-1. An overview on composites materials
I-2. The reinforcing fibers
I-2.1. Natural fibers
I-2.2. Principal characteristics of vegetal fibers
I-2.2.1. Cellulose
I-2.2.2. Hemicelluloses
I-2.2.3. Lignin
I-2.3. Presentation of Miscanthus
I-3. Aliphatic biodegradable polyesters
I-3.1. Synthesis of biodegradable aliphatic polyesters
I-3.1.1. Synthesis of poly(lactic acid) (PLA)
I-3.1.2. Synthesis of poly(ε-caprolactone) (PCL)
I-3.1.3. Synthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV)
I-3.2. Thermal and mechanical properties of aliphatic biodegradable polyesters
I-3.3. Biodegradability of aliphatic polyesters
I-3.4. Thermal degradation of aliphatic polyesters
I-4. Toward biocomposites
I-4.1. Treatment of vegetal fibers
I-4.2. Processing methods
I-4.2.1. The compounding processes
I-4.2.2. The molding processes
I-4.3. PLA-based composites
I-4.4. PCL-based biocomposites
I-4.5. PHBHV-based biocomposites
I-5. Micromechanics of heterogeneous materials
I-5.1. Micromechanical framework
I-5.2. First Simple analytical methods
I-5.3. Eshelby approximation
I-5.4. Halpin-Tsai Equations
I-5.5. Mori-Tanaka-Benveniste Model
I-5.6. Numerical Methods: a focus on Finite Element Method
I-6. Conclusions
I-7. References
Chapter II Functionalization of Miscanthus by photo-activated thiol-ene addition to improve interfacial adhesion with polycaprolactone
II-1. Introduction
II-2. Experimental
II-2.1. Materials
II-2.2. PMMS grafting onto Miscanthus giganteus fibers
II-2.3. Composites manufacturing, PCLxMISy
II-2.4. Analytical techniques
II-3. Results and discussion
II-3.1. PMMS photo-grafting on the Miscanthus fibers
II-3.2. Preparation of biocomposites, PCLxMISy
II-3.3. Characterization of biocomposites
II-4. Conclusions and Perspectives
II-5. Appendix
II-5A. Effect of fibers content on PCL
II-5B. Effect of BPO on PCL/MIS biocomposites
II-6. References
Chapter III Study of mechanical properties of PHBHV/Miscanthus green composites combining experimental and micromechanical approaches
III-1. Introduction
III-2. Materials and methods
III-2.1. Materials
III-2.2. Composite processing
III-2.3. Materials characterization
III-2.3.1. Scanning electron microscope (SEM)
III-2.3.2. Mechanical properties
III-2.3.3. Fiber-size distribution
III-2.3.4. Density measurements
III-2.3.5. Differential scanning calometry (DSC)
III-2.4. Modeling
III-3. Results
III-3.1. Mechanical properties of biocomposites
III-3.2. Scanning electron microscopy (SEM)
III-3.3. Fiber-size distribution
III-3.4. Density of Miscanthus and composites
III-3.5. Results of numerical simulation
III-4. Discussion
III-4.1. The mechanical behavior of PHBHV/MIS composites
III-4.2. Internal morphology and density of the bio composites
III-4.3. Numerical simulation
III-5. Conclusions and perspectives
III-6. Appendix
III-6A. Identification of the Young modulus of the matrix
III-6B. Estimation of volumetric fraction of fibers in the specimens
III-6C. Effect of time on mechanical and thermal properties of PHBHV-based composites…
III-7. References
Chapter IV Effect of fiber content, length and arrangement on the mechanical modulus of PHBHV/Miscanthus fiber composites: contribution of a finite element model
IV-1. Introduction
IV-2. Experimental investigation
IV-2.1. Materials and processing
IV-2.1.1. Materials
IV-2.1.2. Composite processing
IV-2.2. Materials characterization
IV-2.2.1. Scanning electron microscopy
IV-2.2.2. Morphology of the fibers
IV-2.2.3. Mechanical properties of the composite
IV-2.3. Experimental results
IV-2.3.1. Scanning electron microscopy (SEM) and fibers characterization
IV-2.3.2. Mechanical properties of the biocomposites
IV-3. Numerical investigation
IV-3.1. Finite element models
IV-3.1.1. 2D FE models
IV-3.1.2. 3D FE models
IV-3.2. Homogenization models
IV-3.3. Numerical results
IV-3.3.1. Tensile modulus
IV-3.3.2. Stress distribution
IV-4. Discussions
IV-4.1. Effect of fiber length and content on the mechanical behavior of the biocomposites
IV-4.1.1. Tensile modulus
IV-4.1.2. Tensile strength
IV-5. Conclusions
IV-6. Appendix
IV-6A. Processing parameters during extrusion and injection molding
IV-7. References
Chapter V Biocomposites based on Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) and Miscanthus giganteus fibers : multiphase modeling of the effective mechanical behavior of biocomposite with improved fiber/matrix interface
V-1. Introduction
V-2. Experimental
V-2.1 Materials
V-2.2 Chemical treatment of Miscanthus giganteus fibers
V-2.3 Composite Manufacturing
V-2.4 Materials characterization
V-2.4.1 Gel fraction
V-2.4.2 Mechanical testing
V-2.4.3 Scanning electron microscopy (SEM)
V-2.4.4 Fourier Transform Infrared Spectroscopy (FTIR)
V-2.4.5 Differential Scanning Calorimetry (DSC)
V-2.4.6 X-ray Diffraction (XRD)
V-3. Results and discussion
V-3.1 Evaluation of PHBHV grafting onto MIS surface during processing evaluated by FTIR-ATR analysis
V-3.2 Tensile properties
V-3.3 Fracture facies Morphology
V-3.4 Characterization of biocomposites by DSC and XRD analyses
V-3.5 Analytical and numerical models
V-3.5.1 Use of a model involving three phases
V-3.5.2 Evaluation of EG and ΦG by a mathematical approach
V-3.5.3 Results of numerical and mathematical approach
V-4. Conclusions
V-5. Appendix
V-5A Realization of specimens of PHBHV90MIS10 (2.2% DCP)
V-6. References




