The characteristics of the solar wind interactions

somdn_product_page

(Downloads - 0)

Catégorie :

For more info about our services contact : help@bestpfe.com

Table of contents

Introduction
1. The Martian environment
1.1. Interaction of the solar wind with the different bodies of the Solar System
1.1.1. The solar wind
1.1.2. Four different classes of interaction
1.2. The Martian obstacle
1.2.1. Mars today
1.2.1.1. Atmosphere – Exosphere – Ionosphere: who is who?
1.2.1.2. The Martian magnetic field
1.2.2. Back to the history of Mars
1.2.2.1. A magnetic field history
1.2.2.2. A Mars’ volatile and climate history
1.3. The interaction of the solar wind with Mars
1.3.1. The steady-state interaction
1.3.1.1. The bow shock and the upstream region
1.3.1.2. The magnetosheath
1.3.1.3. The Magnetic Pile-up Boundary and the Magnetic Pile-up Region
1.3.1.4. The ionopause and the PhotoElectron Boundary
1.3.1.5. The ionosphere
1.3.1.6. The wake and the magnetotail
1.3.2. Dynamics of the Martian interaction with the Sun
1.3.2.1. Martian magnetic topology
1.3.2.2. Pressure balance
1.3.2.3. Variability of the boundaries
1.3.3. Focus on the nightside ionosphere
2. Instrumentation, data and analysis tools used
2.1. Exploration of Mars
2.1.1. Mars Global Surveyor
2.1.1.1. Scientific objectives
2.1.1.2. Orbitography
2.1.1.3. Instruments
2.1.1.4. Main discoveries
2.1.2. Mars Express
2.1.2.1. Scientific objectives
2.1.2.2. Orbitography
2.1.2.3. Instruments
2.1.2.4. Main discoveries
2.1.3. MAVEN
2.1.3.1. Scientific objectives
2.1.3.2. Orbitography
2.1.3.3. Instruments
2.1.3.4. Main discoveries
2.2. Instrumentation
2.2.1. Mars Global Surveyor
2.2.1.1. The magnetometer: MAG
2.2.1.2. The Electron Reflectometer: ER
2.2.2. Mars Express
2.2.2.1. Electron Spectrometer: ELS
2.2.2.2. The ion spectrometer: IMA
2.2.3. MAVEN
2.2.3.1. The ion spectrometer: STATIC
2.2.3.2. The Magnetometer: MAG
2.2.3.3. The Electron spectrometer: SWEA
2.2.3.4. The Langmuir probe: LPW
2.2.4. Contamination
2.3. Data coverage
2.4. Analysis tools
2.4.1. AMDA and 3D view
2.4.2. CL
2.5. Frames
2.5.1. The Mars-centric Solar Orbital (MSO) frame
2.5.2. The IAUMars frame
2.5.3. Definition of the altitude
2.5.4. Definition of the nightside
2.6. Model of crustal magnetic field: the model of Morschhauser et al. [2014]
3. Identification of suprathermal electron depletions in the nightside ionosphere
3.1. A story of depletions
3.1.1. Discovery of electron depletions
3.1.2. On the origin of plasma voids
3.1.3. Global properties of the plasma voids observed by MGS and MEX
3.2. General properties of electron depletions observed with MAVEN
3.2.1. Plasma voids or suprathermal electron depletions?
3.2.2. Plasma composition
3.2.2.1. Ions characteristics
3.2.2.2. Electrons characteristics
3.2.3. An overview of the variety of the flux spikes
3.2.4. Are electron depletions really related to crustal fields?
3.3. Automatic detection of suprathermal electron depletions: definition of the criteria
3.3.1. MAVEN
3.3.2. MEX
3.3.3. MGS
3.4. Application of the criteria
3.4.1. Application to MGS
3.4.2. Application to MAVEN
3.4.2.1. Application of criterion (1)
3.4.2.2. MAVEN coverage
3.4.3. Application to MEX
3.4.3.1. Unrestricted application
3.4.3.2. Restricted application
4. On the processes at the origin of suprathermal electron depletions 
4.1. Altitude dependence of the distribution of suprathermal electron depletions
4.1.1. Altitude distribution of the electron depletions observed by MAVEN
4.1.2. Geographical distribution of suprathermal electron depletions: a common vision from above 250 km
4.1.2.1. Geographical distribution at 400 km
4.1.2.2. Geographical distributions from 250 km to 900 km
4.1.3. Going down to 125 km altitudes with MAVEN
4.1.3.1. From 250 to 170 km
4.1.3.2. Below 170 km
4.2. A competition between two main loss processes
4.2.1. Plasma composition of suprathermal electron depletions
4.2.2. The role of crustal magnetic sources
4.2.2.1. Comparison between the northern and southern hemispheres with both MAVEN and MEX
4.2.2.2. Evolution of the altitude distribution of electron depletions with crustal magnetic field amplitude
4.2.2.3. Pressure balance
4.3. Discussion on the altitude of the electron exobase
4.3.1. Updated scenario of creation of suprathermal electron depletions
4.3.2. Evolution of the altitude of the exobase with the Solar Zenith Angle
5. Around the holes: the dynamics of the nightside ionosphere
5.1. Where the electron depletions stop: the flux spikes
5.1.1. Injection of ionospheric plasma
5.1.2. Energy-time dispersed electron signature
5.1.3. Current sheet crossing at low altitudes
5.2. Unexpected (non-)observations of suprathermal electron depletions
5.2.1. Observation of electron depletions on the dayside
5.2.1.1. An altitude issue
5.2.1.2. A spacecraft charging issue
5.2.2. Non-observation of electron depletions at low altitudes
5.2.2.1. Different types of orbits with no electron depletion
5.2.2.2. Distribution of the 61 events in the Martian environment
5.2.2.3. Focus on the Tharsis region
5.3. Where suprathermal electron depletions reveal the UV terminator
5.3.1. Observation of the UV terminator
5.3.1.1. Distribution of electron depletions as a function of SZA
5.3.1.2. Review of the nightside definition
5.3.1.3. Observation of the UV terminator with LPW and SWEA
5.3.1.4. Back to suprathermal electron depletions
5.3.2. Determination of the average altitude of the UV terminator
5.3.2.1. Distribution of electron depletions over one Martian year
5.3.2.2. Methodology
5.3.2.3. Results and comparison with model
5.3.3. Evolution of the UV terminator with seasons: the dawn- dusk asymmetry
5.3.3.1. Predictions from the model of Robert Lillis
5.3.3.2. Results obtained with electron depletions
5.3.3.3. Focus on the equinox of 2016
5.3.3.4. The mystery of the reversal at the aphelion and perihelion
Conclusions and Perspectives

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *