(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
Chapter 1: Context and Theoretical Background
1 Introduction
2 Empirical context: Trends in Science and the landscape of Large Research
2.1 The future of science: a growing dependency on big equipment and data
2.2 Descriptive elements of RI
3 A selective literature review on the notion of creativity
3.1 Creativity in science
3.1.1 Scientific creativity as the production of new and valuable knowledge
3.1.2 Combining knowledge, the work of Arthur Koestler and the mechanism of bisociation
3.1.3 From genius to chance: the works of Dean Keith Simonton
3.1.4 The impact of the organizational environment: the works of Teresa Amabile
3.2 Creativity as a collective process: contributions of management literature
3.2.1 The creative process: perspectives from the study of innovation
3.2.2 The role of organizational learning
3.2.3 The role of communities
3.3 Towards a conceptual framework
3.3.1 Synthesis of the most relevant points of the literature
3.3.2 Positioning the thesis along the dimensions of creativity
3.3.3 Building blocks of the collective science creation process
4 Epistemological and methodological foundations
4.1 Epistemological foundations
4.2 Epistemological paradigms
4.2.1 Critical realism
4.3 The reasoning model
4.4 Research methodology
4.4.1 Qualitative methodology
4.4.2 The case study
4.4.3 Methodological development and quantitative analysis
5 Concluding remarks
Chapter 2: Large Instruments as facilitators of users’ creative process: The role of organizational factors, collaborations and communities in the case of a European Synchrotron
1 Introduction
2 Theoretical Framework
2.1 Favourable factors for creativity at the synchrotron
2.1.1 Scientific autonomy and leadership
2.1.2 Scientific diversity
2.1.3 The role of communities
2.1.4 Summary of factors and objectives for the case study
2.2 The creative mechanisms: combining complementary pieces of knowledge through effective communications and interactions
2.3 Creative outcomes: The synchrotron contribution to users’ creative results
2.3.1 Knowledge creation
2.3.2 Innovation
2.3.3 Quality and impact
2.4 Conceptual framework and Research gap
3 Empirical analysis: A qualitative case study about the synchrotron SOLEIL
3.1 Context and presentation of the case: The EvaRIO project and the Synchrotron SOLEIL
3.2 Empirical analysis
3.2.1 Why choosing a case study methodology?
3.2.2 The data
3.2.3 Method of analysis
3.3 Analysis and results
3.3.1 Favourable factors to creativity
3.3.2 The creative mechanisms
3.3.3 Synchrotron contribution to creativity: knowledge, technology and communities
3.3.4 Quality and impact
4 Discussion of the results
4.1 Favourable factors and mechanisms for creativity at the synchrotron
4.1.1 Beamline scientists
4.1.2 Variety
4.1.3 The role of communities
4.2 The creative mechanisms
4.2.1 Effective communication
4.2.2 From communication to partnerships
4.2.3 Difference between beamlines
4.3 Creative outcomes
4.3.1 Novelty and value
4.3.2 Unexpected result
4.4 Summary of findings
4.4.1 Possible limits to creativity
5 Conclusion
Chapter 3: Large Bio Medical Databases as drivers of creativity: An analysis of the case of the Pharmaceutical Industry.
1 Introduction
2 Theoretical framework
2.1 Findings on scientific creativity: the importance of variety
2.2 Insights on knowledge distance and variety
2.3 Insights on the role of explicit knowledge on creativity
2.4 Research gap
3 Presentation of the case study, EBI databases and methodological approach .
3.1 Description of the EBI databases
3.2 Research Strategy
3.3 Choice of informers
3.4 Interviews
4 Analysis and results
4.1 Analysis of transcript (first wave of interviews)
4.2 Analysis of transcripts (2nd wave of interviews)
4.3 Discussion of results
4.4 Serendipity
5 Conclusion and perspectives
Chapter 4: Measuring RIs’ impact on scientific creativity. The case of the synchrotron
1 Introduction
2 Measuring scientific creativity
2.1 Finding an operational definition of creativity
2.2 Metrics for the study of creativity in science
2.2.1 Traditional focus on value through the measurement of impact
2.2.2 Focusing on the measurement of novelty
3 An empirical exercise on synchrotron beamlines
3.1 Methodology
3.1.1 Part 1: impact analysis
3.1.2 Part 2: novelty analysis
3.2 The data
3.2.1 Beamline papers
3.2.2 Journal universe and scientific categories
3.2.3 WoS notices
3.3 Analysis and results
3.3.1 Scientific field and (relative) impact of beamline papers
3.3.2 (Un-)commonness of journal citations and citation combination in beamline papers 240
3.4 Discussion of results
4 Conclusion
Appendix Chapter 4
General Conclusion
1 General Outlook
2 Main results
2.1 Supportive conditions and mechanisms for creativity
2.2 Types of creative outcome
2.3 Methodology for evaluation of impact on creativity
3 Policy and managerial implications
3.1 Managerial implications
3.2 Policy Implications
4 Limits and perspectives
5 Concluding Remarks
References




