The galaxy luminosity function

somdn_product_page

(Downloads - 0)

Catégorie :

For more info about our services contact : help@bestpfe.com

Table of contents

1 Introduction 
1.1 The early Universe
1.1.1 First structure and galaxy formation
1.1.2 Epoch of reionization
1.1.3 Identifying the sources of reionization
1.2 High redshift and star forming galaxies
1.2.1 Lyman-Alpha emitters
1.2.1.1 Description and observational features
1.2.1.2 Selection methods
1.2.2 Lyman-Break Galaxies
1.2.2.1 Absorption features in Lyman-break galaxies
1.2.2.2 Selection method and photometric redshifts
1.2.3 The galaxy luminosity function
1.2.3.1 Schechter parameterization
1.2.3.2 What can we learn from the study of the LF ?
1.3 Constraints on the timeline of reionization
1.3.1 Quasar observations
1.3.2 High redshift LAEs
1.3.3 Thomson optical depth and summary
1.4 Investigating SFGs as main drivers of reionization
1.4.1 The UV and LAE LF
1.4.2 Using strong lensing clusters
1.4.3 Total SFGs contribution to reionization
1.5 This work
2 The VLT/MUSE instrument 
2.1 General overview and technical features
2.2 Main science goals of MUSE
2.3 MUSE to study the galaxy population
2.3.1 Detection of faint emission line objects
2.3.2 Advantages of a blind spectroscopic selection for the LAE LF
2.4 Noise structure in MUSE cubes
2.4.1 Structure of the instrument
2.4.2 Sky emission lines
2.4.3 Sensitivity of the instrument and final combination
2.5 Cataloging sources in a MUSE FoV
3 Lensing clusters: methodology and MUSE observations 
3.1 Mass modelling methodology
3.1.1 Constraining the mass distribution with gravitational lensing
3.1.2 Parametric modelling with Lenstool
3.2 Observations
3.2.1 MUSE observations
3.2.2 Complementary HST observations
3.2.3 Source detection
3.3 Correcting for lensing
3.3.1 Description of the models used
3.3.2 Image plane
3.3.3 Source plane projection
4 Luminosity Function of LAEs: Computing effective volumes from MUSE data cubes 
4.1 Motivations
4.2 Source detection in MUSE cubes with Muselet
4.2.1 Definitions
4.3 Computing 2D detection masks
4.3.1 Presentation of the algorithm
4.3.2 Results, examples and tests
4.3.3 Direct application to mask 3D cubes in the source plane
4.4 Adopted method to efficiently mask 3D cubes in the source plane
4.4.1 Definition of noise levels and S/N
4.4.2 Main simplifications
4.4.3 assembling 3D masks in image and source plane
4.5 Volume integration and results
4.5.1 Effect of S/N sampling
4.5.2 Discussion on the method
5 Determination of the Luminosity Function of LAEs at 3 . z
5.1 Lyα flux computation and final selection of lensed sources
5.1.1 Source selection and flux weighted magnification
5.2 Vmax computation summary
5.3 Completeness determination
5.3.1 Source profile reconstruction
5.3.2 Source recovery experiments
5.3.3 Results and discussion
5.4 Computing the LF points
5.4.1 Tests with different luminosity binnings
6 Results: The LAE LF
6.1 Presentation of the lensed LAE sample and comparison with the MUSE-HUDF sample
6.2 LF analysis
6.2.1 Lensing sample only
6.2.2 Schechter fit of the LAE LF
6.2.2.1 Fitting method and results
6.2.2.2 Impact of luminosity binning
6.2.2.3 Discussion: Evolution of the LF with redshift
6.3 Discussion: Implication for the reionization
6.3.1 Impact of the mass model
6.3.2 Ionizing flux density
7 Intersection of the LAE and LBG populations
7.1 Source selection
7.1.1 Astrodeep catalog: filtering and cross matching with MUSE detections
7.1.2 SED fitting and photometric redshift with HyperZ
7.1.3 selection criteria
7.2 Results
7.2.1 Overview
7.2.2 Evolution with redshift
7.2.3 Evolution with luminosity and UV magnitude
7.3 Possible interpretation
8 Conclusion and future prospects

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *