The Halo Mass Function

somdn_product_page

(Downloads - 0)

Catégorie :

For more info about our services contact : help@bestpfe.com

Table of contents

1 Introduction 
2 The Formation of Galaxies 
2.1 Dark Matter Statistics
2.1.1 Spherical Top-Hat Collapse Model
2.1.2 The Halo Mass Function
2.2 N-body Simulations
2.2.1 Comparing N-body Simulations with Observations
2.3 Including the Baryons into the Picture
2.3.1 Physics of the Interstellar Medium
2.3.1.1 Radiative Cooling and Heating
2.3.1.2 Star Formation
2.3.2 Feedback Processes
2.3.3 Comparing Hydrodynamical Simulations with Observations
2.4 Active Galactic Nuclei
2.4.1 Classification of AGN
2.4.2 Correlating the AGN power to the Accretion Rate and AGN mode
2.4.3 Radio Galaxies and Jets
2.4.4 Quasars
2.4.5 Positive or Negative Feedback
2.4.5.1 Observations
2.4.5.2 Theoretical Work
3 Numerical Modeling of Galaxies 
3.1 Collisionless N-body systems
3.1.1 Particle-Mesh Method
3.2 Collisional Systems
3.2.1 Deriving the Fluid Equations
3.2.2 Different Approaches to solve the Fluid Equations
3.2.3 Discretising the Fluid to solve it on a Grid
3.3 ramses: A numerical N-body and HD code using adaptive mesh refinement (AMR)
3.3.1 Adaptive Mesh Refinement structure
3.3.2 Time-stepping Scheme
3.4 Sub-grid physics to study galaxy formation and evolution
3.4.1 Radiative Cooling and Heating
3.4.2 Polytropic Equation of State
3.4.3 Star Formation
3.4.4 Supernova Feedback
3.4.5 Black Hole Feedback
3.5 Radiation-Hydrodynamics (RHD)
3.5.1 The Radiation-Hydrodynamics equations
3.5.2 Moments of the RT equation
3.5.3 The RHD equations
3.5.4 Closing the Moment Equations
3.6 Ramses-RT: An RHD extension to ramses to model propagation of photons
4 External pressure-triggering of star formation 
4.1 Jet Propagation
4.2 Playing with Positive Feedback: External Pressure-triggering of a Starforming Disk Galaxy
4.2.1 Introduction
4.2.2 Simulation Set-up
4.2.3 Results
4.2.3.1 Disc fragmentation and star formation history
4.2.3.2 Mass Flow Rate
4.2.4 Conclusions
4.3 External pressure-triggering of star formation in a disc galaxy: a template for positive feedback
4.3.1 Introduction
4.3.2 Simulation Set-up
4.3.2.1 Basic simulation scheme
4.3.2.2 Application of external pressure
4.3.3 Results
4.3.3.1 Qualitative differences
4.3.3.2 Disc fragmentation
4.3.3.3 Star formation history
4.3.3.4 Clump properties
4.3.3.5 The galaxy’s mass budget
4.3.3.6 The star formation rate
4.3.3.7 The Kennicutt-Schmidt relation
4.3.4 Conclusions
4.3.5 Appendix
4.3.5.1 Bipolar pressure increase
4.3.5.2 Effects of supernova feedback
4.3.5.3 Convergence Studies
5 Feedback from Radiatively-driven AGN Winds 
5.1 Setting up the initial two-phase density distribution
5.2 Outflows Driven by Quasars in High-Redshift Galaxies with Radiation Hydrodynamics
5.2.1 Introduction
5.2.2 Methods
5.2.2.1 Initial Gas Density Distribution
5.2.3 Radiation Hydrodynamics
5.2.3.1 Modeling the Quasar
5.2.4 Results
5.2.4.1 Effects of Different Cloud Sizes
5.2.4.2 Qualitative Effects of Cloud Sizes
5.2.4.3 Effects of Different Photon Groups on the Cloud Evolution
5.2.4.4 Efficiency of the Photon-Gas Coupling
5.2.5 Evolution of the Optical Depth
5.2.5.1 Effects of the Quasar Position
5.2.5.2 Comparison between Different Luminosities
5.2.6 Discussion
5.2.7 Conclusions
5.2.8 Appendix
6 Conclusions and Perspectives
6.1 Conclusions
6.2 Future Prospects

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *