The indirectly fired gas turbine (IFGT)

somdn_product_page

(Downloads - 0)

Catégorie :

For more info about our services contact : help@bestpfe.com

Table of contents

ABSTRACT
ACKNOWLEDGEMENTS
TABLE OF CONTENTS
LIST OF FIGURES
LIST OF TABLES
NOMENCLATURE
1 BACKGROUND
1.1 MICRO GAS TURBINE
1.2 MICRO GAS TURBINE AND BIOMASS
1.3 INTERNALLY FIRED MICRO GAS TURBINE
1.4 EXTERNALLY FIRED MICRO GAS TURBINE
1.5 COMPRESSOR
1.6 REGENERATOR
1.7 COMBUSTION
1.7.1 Micro-Combustor Challenges
1.7.2 Combustion of Low LHV Fuels
1.7.3 Gas Turbine Combustor Configurations
1.7.3.1 Combustion Separated Zones
1.7.3.2 Catalytic Combustion
1.7.3.3 Engine size
1.7.3.4 Lean Premixed-Prevaporized (LPP) combustion
1.7.3.5 Lean Premixed Combustion
1.7.3.6 Rich Burn- Quick Mix-Lean Burn (RQL) Combustor
1.7.4 Micro Gas Turbine Combustors
1.7.4.1 The Annular Combustor Scaled for MGT applications
1.7.4.2 The Lean-Premixed Combustor
1.7.4.3 Rich Burn- Quick Quench-Lean Burn (RQL) Combustor
1.7.4.4 Comparison between the Combustors for MGT
1.8 EMISSIONS
1.9 GENERATOR AND POWER ELECTRONICS
1.10 MODELING TECHNIQUES
2 OBJECTIVES
3 METHOD OF ATTACK
4 BOUNDARY CONDITIONS
4.1 FUEL FOR THE GAS TURBINE
5 THERMODYNAMIC LAYOUT
5.1 INTERNALLY FIRED MICRO GAS TURBINE CYCLE
5.1.1 Compressor
5.1.1.1 Conditions at inlet of impeller
5.1.2 Regenerator
5.1.3 Combustor
5.1.4 Turbine
5.1.4.1 Conditions at rotor inlet
5.1.4.2 Conditions at rotor outlet
5.1.5 Exhaust Heat Recovery
5.1.6 Fuel Compression
5.2 EXTERNALLY FIRED MICRO GAS TURBINE (EFGT) CYCLE
5.2.1 High Temperature Heat Exchanger
5.2.2 Exhaust Heat Recoveries
5.2.2.1 Gas-to-Water Heat Exchanger
5.2.2.2 Air-to-Water Heat Exchanger
5.2.3 Fuel Compression
5.2.4 Air Compression (External Flow Path)
Numerical Modeling and Analysis of Small Gas Turbine Engine
6 NUMERICAL STUDIES
6.1 CONVERGENCE STUDY-INFLUENCE OF MESH SIZE
6.2 CONVERGENCE STUDY-INFLUENCE OF RMS RESIDUAL TARGET
6.3 COMPRESSOR PERFORMANCE
6.4 STEADY STATE COMPRESSOR SIMULATIONS
6.4.1 Single blade passage (inlet, impeller and diffuser)
6.4.2 360 degree compressor model (inlet, impeller and diffuser)
6.4.3 360 degree compressor model (inlet, rotor and diffuser) connected with inlet straight pipe
6.4.4 Complete compressor-360 degree model (inlet, rotor and diffuser) connected with inlet degree bended pipe
6.5 TRANSIENT COMPRESSOR SIMULATIONS
6.5.1 Single blade passage (inducer, impeller and diffuser)
6.5.2 Complete compressor-360 degree model (inlet, rotor and diffuser)
6.5.3 Complete compressor-360 degree model (inlet, rotor and diffuser) connected with inlet straight pipe
6.5.4 Complete compressor-360 degree model (inlet, rotor and diffuser) with connected inlet bended pipe
6.6 ANALYSIS OF NUMERICAL SIMULATIONS
7 RESULTS AND DISCUSSIONS
7.1 INTERNALLY FIRED GAS TURBINE CYCLE-1.749KWEL FOR ROTATIONAL SPEED OF 120000RPM
7.2 INTERNALLY FIRED GAS TURBINE CYCLE-2.388KWEL FOR ROTATIONAL SPEED OF 130000RPM
7.3 EXTERNALLY FIRED GAS TURBINE CYCLE-0.64KWEL FOR ROTATIONAL SPEED OF 120000RPM
7.4 EXTERNALLY FIRED GAS TURBINE CYCLE-0.986KWEL FOR ROTATIONAL SPEED OF 130000RPM
7.5 PARAMETRIC STUDIES/ANALYSIS OF THE SYSTEM COMPONENTS
7.5.1 Compressor
7.5.2 Exhaust heat recovery heat exchangers
7.5.3 Turbine
8 CONCLUSIONS AND FUTURE WORK
9 REFERENCES
10 APPENDICES
10.1 APPENDIX-A
Derivation of relation for specific fuel consumption (β )
10.2 APPENDIX-B
Explore-Biomass based Polygeneration Flow Chart
10.3 APPENDIX-C
10.3.1 Compressor (COMPR-air compression)
10.3.2 Regenerator
10.3.3 Combustor
10.3.4 Turbine
10.3.5 Exhaust Heat Recovery-Heat Exchanger (HEATREC)
10.3.6 Compressor (BIOCOMP-fuel compression)
10.4 APPENDIX-D
10.4.1 Compressor (MAINCOMP-air compression in the internal flow path)
10.4.2 High Temperature Heat Exchanger
10.4.3 Turbine
10.4.4 Regenerator
10.4.5 Air-to-Water Heat Exchanger (HEATREC1)
10.4.6 Compressor (AIRCOMP-air compression in the external flow path)
10.4.7 Compressor (BIOCOMP-fuel compression)
10.4.8 Combustor
10.4.9 Gas-to-Water Heat Exchanger (HEATREC2)
10.5 APPENDIX-E
10.5.1 Excel calculations-Internally fire gas turbine cycle (2.388kWel)
10.6 APPENDIX-F
10.6.1 Matlab code- Compressor (2.388kWel machine-Internally fired gas turbine cycle)
10.6.2 Matlab code-Turbine (2.388kWel machine-Internally fired gas turbine cycle)
Nawaz Ahmad EGI-2009-001MSc EKV1128
10.7 APPENDIX-G
10.7.1 Excel calculations-Externally fired gas turbine cycle (0.986kWel)
10.8 APPENDIX-H
10.8.1 Matlab code-Compressor (0.986kWel machine-Externally fired gas turbine cycle)
10.8.2 Matlab code-Turbine (0.986kWel machine-Externally fired gas turbine cycle

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *