(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
Introduction
Climate, energy and institutional context
The 3 decarbonisation pillars
Low carbon electricity, a key option to decarbonise energy systems, but not the silver
Bioenergy: another alternative to decarbonise almost all energy systems?
Renewable gas: the missing piece of the decarbonisation puzzle?
Objectives of the thesis
Outline of the thesis
Keywords
Chapter 1: The emergence of greening the gas in energy sector
1. The energy and climate context
1.1. A recent strong growth in world energy consumption
1.2. Relative threats for Earth sustainability
2. Decarbonisation, the most important challenge of XXIst century?
2.1. Causes, consequences and impacts of climate change
2.2. The three decarbonisation pillars
2.3. Energy transition and decarbonisation options
3. Bioenergy role in decarbonisation
3.1. Biomass feedstocks overview
3.2. Biomass, a renewable and polyvalent source of energy conversion
4. Green gas seen as a decarbonisation option
4.1. Gas can be a key energy for the energy transition
4.2. Biomass and green gas: a linkage to decarbonise the gas and the energy system
Chapter 2: State of the art of greening the gas production
1. Technical and economic aspects of natural gas
1.1. Gas physical properties
1.2. Natural gas value chain
1.3. Gas consumption
1.3.1. World mapping
1.3.2. Gas uses
1.4. Gas relative emissions
1.5. Gas trade and prices
1.5.1. International exchanges
1.5.2. Prices settlement
1.6. Projections of the future of gas
2. Presentation of renewable gas
2.1. History of biogas and technological introduction
2.2. Green gas technologies portfolio presentation
2.2.1. Methanisation
2.2.1.1. Process description
2.2.1.2. Type of inputs
2.2.2. Gasification
2.2.2.1. Process description
2.2.2.2. Type of gasifiers
2.2.3. Electricity electrolysis
2.2.4. Summary
2.2.4.1. Technological development
2.2.4.2. Green gas technologies benefits
2.2.4.3. Green gas technologies concerns
3. Green gas system details
3.1. Historical production
3.1.1. Biogas production
3.1.1.1. World
3.1.1.2. Europe
3.1.2. Biomethane production
3.1.2.1. World trends
3.1.2.2. Europe
3.1.2.3. France
3.2. Biogas and biomethane potentials
3.2.1. World
3.2.2. Europe
3.2.3. France
3.3. Biogas and biomethane costs
3.4. Political instruments to incentivize green gas production
Chapter 3: Energy system modelling and thesis methodology
1. POLES Model presentation
1.1. General aspects
1.2. Biomass energy modelling
1.2.1. Biomass potential
1.2.2. Bioenergy routes
2. Overview of the gas system modelling approach
3. Green gas energy module in POLES
3.1. General structure
3.2. Detailed code mechanisms
3.2.1. Methanisation
3.2.2. Gasification
3.2.3. Power to gas
3.2.4. Technology modelling
4. Database structure
4.1. Green gas production
4.2. Resource potentials and marginal costs
4.3. Technological costs and performances
5. Scenarios considered
5.1. Climate policies scenarios
5.2. Technological scenarios
5.3. The importance of CCS
5.4. Summary
Chapter 4: Green gas in sectoral decarbonisation
1. Increasing green gas in the gas supply
1.1. Main features of the gas supply
1.2. Regional specificities for green gas production
1.3. Scenarios sensitivity for green gas and fossil gas production
1.4. Conclusion for greening gas supply
2. Gas role in transport decarbonisation
2.1. Current road transportation structure
2.1.1. The actual park
2.1.2. Road transportation emissions mitigation solutions
2.1.3. Transportation related policies
2.2. The gaseous mobility
2.3. Expected future for road mobility
2.3.1. Benchmark
2.3.1.1. Future of mobility patterns
2.3.1.2. Future of gaseous mobility
2.3.2. Mobility module in POLES and analysis
2.4. Discussion
2.4.1. The need of reducing mobility environmental footprint
2.4.2. The gas mobility role in mobility mixes
3. Other sectors decarbonisation
3.1. Buildings
3.1.1. Overview of energy consumption in buildings
3.1.2. Results and analysis
3.1.3. Discussion
3.2. Industrial decarbonisation feedstock
3.2.1. Overview of energy consumption in industry
3.2.2. Results and analysis
3.3. Agriculture decarbonisation
3.3.1. Overview of energy consumption in agriculture
3.3.2. Results and analysis
Chapter 5: electricity and gas networks interactions
1. The electricity system in the decarbonisation context
1.1. The electricty generation mix
1.1.1. Current electricity production overview
1.1.2. The merit order mechanism for power plants allocation
1.2. The need of different flexibility solutions
1.2.1. Dispatchable production plants.
1.2.2. Flexibility brought by demand
1.2.3. Storages systems
1.3. The different time-horizons of flexibility
2. Interactions between gas and electricity networks
2.1. Limits of electrification and high rates of renewables incorporation
2.2. Power to gas technological costs
2.3. Power to gas business model assessment
2.3.1. Methodology
2.3.2. P2G business model discussion
2.3.3. The question of CO2 cost accounting
2.4. Conclusion
2.4.1. P2G business model
2.4.2. Demonstration projects and challenges
Conclusion and perspectives
Green gas: an important option for energy system decarbonisation
Green gas: a long term electricity storage option
Greening gas supply: still a prospective field?
Threats and concerns with gas and green gas use and development
Perspectives of this work
Appendix
Appendix 1: Biomethane detailed techno economic parameters
Appendix 2: Biomethane feed in tariffs in France
Appendix 3: Green gas production database
Appendix 4: Electric mixes for P2G business model study
Glossary
Index of figures
Index of tables
Bibliography
Executive summary


