The vacuum fiber feedthroughs

somdn_product_page

(Downloads - 0)

Catégorie :

For more info about our services contact : help@bestpfe.com

Table of contents

Introduction
1 Subwavelength optical fibers
1.1 Propagation in optical nanofibers
1.1.1 Step-index fiber: Derivation of the guided mode properties
1.1.2 Properties of the fundamental HE11 mode in a nanofiber
1.2 Producing optical nanofibers
1.2.1 Hydrogen/Oxygen flame
1.2.2 Cleaning and preparing the fiber for pulling
1.2.3 Controlling the pulling stages
1.2.4 Monitoring and characterizing the process
1.3 Setting the polarization of a nanofiber-guided light beam
2 A nanofiber in a cold atom physics experiment
2.1 The vacuum system and the transfer of a nanofiber into vacuum
2.1.1 A « breakable » vacuum system
2.1.2 The cesium dispensers
2.1.3 The vacuum fiber holder
2.1.4 The vacuum fiber feedthroughs
2.1.5 Transferring a nanofiber into vacuum
2.1.6 Detecting leaks
2.2 Manipulating atoms with lasers
2.2.1 Some general ideas on atom/electro-magnetic field interaction
2.2.2 A magneto-optical trap for cesium
2.2.3 Laser system
2.3 First guided-light/atom cloud interaction evidence
2.3.1 Overlapping the MOT and the nanofiber
2.3.2 Absorption measurements
3 An EIT-based memory for nanofiber guided light
3.1 Theoretical basis for a -type 3-level atom
3.1.1 Schrödinger equation and dark state
3.1.2 Optical Bloch equations
3.1.3 Polarization of the fields and atomic angular momentum in EIT
3.1.4 Dynamic EIT and the classical dark-state polariton
3.1.5 The quantum dark-state polariton
3.2 Experimental evidence of EIT for a nanofiber guided probe
3.2.1 Some experimental parameters
3.2.2 Transparency
3.2.3 Slow light
3.2.4 Implementation of the memory protocol
3.2.5 Memory lifetime and controlled revivals
4 A nanofiber-trapped ensemble of atoms
4.1 A two-color dipole trap in the evanescent field of a nanofiber
4.1.1 Basic ideas of two-color trapping
4.1.2 Dynamical (ac) Stark shifts for a real alkali atom
4.1.3 Back to the trap: ground-state coherence
4.1.4 Driving optical transitions in a dipole trap: magic wavelengths .
4.1.5 The chosen nanofiber trap
4.1.6 Collisional blockade
4.1.7 Loading the trap
4.2 Experimental realization
4.2.1 Optical system
4.2.2 Loading the trap
4.2.3 Characterizing the trap
Conclusion
A Experiment control
A.1 Interfacing the experiment
A.2 FPGAs as a tool for synchronization and time-stamp acquisition
A.2.1 Different possible choices
A.2.2 FPGA programming
B Magnetic fields
B.1 Measuring magnetic fields with Zeeman structure spectroscopy
B.1.1 Method for Zeeman-sublevel spectroscopy
B.1.2 Canceling residual magnetic field offset and gradients in our experiment
B.2 Magnetic field coil design
B.2.1 Helmholtz and anti-Helmholtz configurations
B.2.2 Coils arrangement for an elongated MOT
B.2.3 Criteria considered for coil design
B.2.4 Final design
C Transferring a nanofiber into vacuum protocol
C.1 Parts needed during operation
C.2 To be prepared days before operation
C.3 Protocol
C.3.1 Getting ready
C.3.2 First stage
C.3.3 Second stage
C.3.4 Third and last stage
Bibliography

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *