(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
Introduction
Chapter 1. State of the art
1.1. Polyaromatics with sulfonic acid directly attached to a backbone
1.1.1. Synthesis by post-sulfonation
1.1.2. Synthesis by condensation of a disulfonated monomer. Random and block-copolymers with SO3H in ortho-to-ether position
1.1.3. Ionomers with SO3H bonded in other than ‘ortho-to-ether’ position
1.2. Polyaromatics with sulfonic acid on a phenyl spacer
1.3. Polyaromatics with sulfonic acid on aromatic bulky structures
1.3.1. On a fluorene
1.3.2. On other multiphenylene structures
1.4. Polyaromatics with sulfonic acid on a long spacer
1.4.1. C(O)PhSO3H and derivatives as pendent chains
1.4.2. O(CH2)xSO3H as a pendent chain
1.5. Polyaromatics with sulfonic acid on a perfluorinated spacer
1.5.1. Y(CF2)xSO3H as a pendent chain
1.5.2. Y(CF2)xSO2NHSO2CF3 as a pendent chain
Chapter 2. Synthesis part. Discussion
2.1. Synthesis of monomers
2.1.1. Synthesis of an ionic function 1a
2.1.2. Copper-mediated coupling
2.1.3. Synthesis of the S-containing ionic intermediate 4e
2.1.4. Demethylation-hydrogenation of ionic intermediates 3a and 4e
2.1.5. Purity of the monomers
2.2. Synthesis of polymers
2.2.1. Polymerization of the monomer 2
2.2.2. Polymerizations of the monomers 3 and 4
2.2.3. Synthesis of ionomers by copolymerization of two ionic monomers
Chapter 3. Characterization of ionomers
3.1. Properties of the (PAE)s series I2 and I4
3.1.1. Thermal stability
3.1.2. Calorimetric analysis
3.1.3. Thermo-mechanical analysis
3.1.4. Bulk morphology
3.1.5. Water uptake
3.1.6. Conductivity
3.1.7. Oxidative stability test (OST)
3.2. Properties of random and block-(PAES)s series I3 and I5
3.2.1. Thermal stability
3.2.2. Calorimetric analysis
3.2.3. Thermo-mechanical analysis
3.2.4. Bulk morphology
3.2.5. Water uptake
3.2.6. Conductivity
3.2.7. Oxidative stability test (OST)
3.3. Properties of the random (PAES)s series I1 and I3
3.3.1. Thermo-mechanical properties
3.3.2. Water uptake and conductivity
3.4. Properties of the ionomers by copolymerization of two ionic monomers
3.4.1. Thermo-mechanical properties, morphology
3.4.2. Water uptake and conductivity
Conclusions
Perspectives
Characterization techniques
Annexes
References




