Theory of quantum gases

somdn_product_page

(Downloads - 0)

For more info about our services contact : help@bestpfe.com

Table of contents

Introduction 
1 Theory 
1.1 Theory of quantumgases
1.1.1 Properties of a classical gas
1.1.2 Properties of a fermionic gas
1.1.3 The effect of interactions on the degenerate Fermi gas
1.1.4 Pauli block ing
1.1.5 Detection of a degenerate Fermi gas
1.1.6 The degenerate Bose gas
1.1.7 The effect of interactions and the Gross-Pitaevskii equation
1.1.8 BEC with attractive interactions
1.1.9 One-dimensional degenerate gases
1.1.10 The 1D condensate
1.1.11 The bright soliton
1.1.12 The effects of Bose statistics on the thermal cloud
1.1.13 Boson-fermionmixtures
1.1.14 The BCS transition
1.2 Evaporative cooling
1.2.1 Sympathetic cooling
1.2.2 The Limits of sympathetic cooling
1.2.3 The Boltzmann equation
1.2.4 Simulation of rethermalization including Pauli blocking
1.2.5 Simulation of sympathetic cooling
1.3 Collisions
1.3.1 Energy dependence of the cross section
1.3.2 Mean field potential
1.3.3 Resonance enhanced scattering
2 The experimental setup 
2.1 Overview of the experiment
2.2 Properties of lithium
2.2.1 Basic properties
2.2.2 Confinement in amagnetic trap
2.2.3 Elastic scattering cross sections
2.3 Other strategies to a degenerate Fermi gas
2.4 The vacuumsystem
2.4.1 The atomic beamsource
2.4.2 Oven bak e-out procedure
2.4.3 Themain chamber
2.5 The Zeeman slower
2.6 The laser system
2.7 Themagnetic trap
2.7.1 Theory ofmagnetic trapping
2.7.2 Design parameters of themagnetic trap
2.7.3 Realization of themagnetic trap
2.8 The optical dipole trap
2.8.1 Principle of an optical dipole trap
2.8.2 Trapping of an alkali atom in a dipole trap
2.8.3 Setup of the optical trap
2.9 The radio frequency system
2.10 Detection of the atoms
2.10.1 Principle of absorption imaging
2.10.2 Imaging optics
2.10.3 Probe beampreparation
2.10.4 Two isotope imaging
2.10.5 Detection parameters
2.10.6 Using absorption images
2.11 Experiment control and data acquisition
3 Experimental results 
3.1 On the road to evaporative cooling
3.1.1 The two isotopeMOT
3.1.2 Optical pumping
3.1.3 Transfer and capture in the Ioffe trap
3.1.4 First trials of evaporative cooling
3.1.5 Doppler cooling in the Ioffe trap
3.2 Measurements
3.2.1 Measurement of the trap oscillation frequencies
3.2.2 Temperaturemeasurements
3.2.3 Measurements of other parameters
3.3 Experiments in the higher HF states
3.3.1 Evaporative cooling of 7Li
3.3.2 Sympathetic cooling of 6Li by 7Li
3.3.3 Detection of Fermi degeneracy
3.3.4 Detection of Fermi pressure
3.3.5 Thermalizationmeasurement
3.4 Experiments in the lower HF states
3.4.1 State transfer
3.4.2 Evaporative cooling of 7Li
3.4.3 Sympathetic cooling of 7Li by 6Li
3.4.4 A stable lithiumcondensate
3.4.5 The Fermi sea
3.5 Loss rates
3.6 Experiments with the optical trap
3.6.1 Adiabatic transfer
3.6.2 Detection of the 7Li |F = 1,mF = 1 Feshbach resonance
3.6.3 Condensation in the 7Li |F = 1,mF = 1 state
3.6.4 A condensate with tunable scattering length
3.6.5 The bright soliton
Conclusion and outlook

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *