(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
1 Introduction
2 Basic mechanisms of plasma-material interaction
2.1 Hydrogen retention in tungsten
2.1.1 Hydrogen mobility
2.1.2 Trapping and surface effects
2.1.3 Modeling of the thermal desorption spectroscopy data
2.2 Mechanisms for blister formation
2.3 Plasma loading conditions expected in the ITER divertor
2.4 Plasma loading impact on surface modifications and retention
2.4.1 Ion fluence and surface temperature
2.4.2 Material microstructure
2.4.3 Combined He/D exposure
2.4.4 Transient heat and particle loads
3 Experimental setup and analysis techniques
3.1 Linear plasma devices
3.1.1 Magnum/Pilot-PSI
3.1.2 PSI-2
3.1.3 PISCES-A
3.2 Analysis techniques
3.2.1 Electron microscopy
3.2.2 Profilometry
3.2.3 Secondary Ion Mass Spectrometry (SIMS)
3.2.4 Nuclear Reaction Analysis (NRA)
3.2.5 Thermal Desorption Spectroscopy (TDS)
3.3 Sample preparation
4 Experimental results and discussion
4.1 Deuterium plasma exposure
4.1.1 Small Grain Tungsten (SGW)
4.1.2 Large Grain Tungsten (LGW)
4.1.3 Recrystallized Tungsten (RecW)
4.1.4 Single Crystal Tungsten (SCW)
4.1.5 Summary and modeling results
4.2 Mixed D/He plasma exposure of recrystallized tungsten
4.3 He and H transient heat and particle loads on polycrystalline tungsten
5 Conclusions and outlook
A Material selection
A.1 Chemical content and material specifications of tungsten bars
B D experiments
B.1 TDS profiles of tungsten samples after exposure to pure D plasma
C He/H experiments
C.1 Surface analysis of Mo-deposited tungsten samples after exposure to H and He plasma



