Trapping in the x-y plane

somdn_product_page

(Downloads - 0)

Catégorie :

For more info about our services contact : help@bestpfe.com

Table of contents

1 Introduction 
1.1 What and Why – Spectroscopy of H+2 2
1.1.1 The Hydrogen Atom
1.1.2 The Hydrogen Molecular Ion
1.1.3 H+2 Spectroscopy at LKB
1.2 How – Be+ Coulomb Crystals
1.3 Overview of this Work
2 Trapping Charged Particles 
2.1 Paul Traps
2.2 A linear Paul Trap
2.2.1 Trapping in the ^x^y-plane
2.2.2 Trapping in the ^z-direction
2.2.3 The Eective Potential
2.3 Design and Implementation of a linear Paul Trap
2.3.1 Trap Accessibility
2.3.2 DC Voltage Supply
2.3.3 RF Voltage Supply
2.4 Loading Ions
2.4.1 Beryllium Oven
2.4.2 E-Gun
2.5 The Vacuum System
2.6 The H+2 Source
2.7 Imaging
2.8 Experiment Control via Python 3
3 Cooling Trapped Ions 
3.1 Doppler Cooling
3.2 Cooling Lasers at 313nm for Beryllium Ions
3.2.1 Master Slave System
3.2.2 Fiber Laser
3.2.3 Bow Tie Cavity
3.3 Other Laser Sources in this Experiment
3.3.1 The REMPI Laser
3.3.2 The Spectroscopy Laser
3.3.3 The Dissociation Laser
4 Crystallized Ions
4.1 Coulomb Crystals
4.2 First crystallized Be+ Ions
4.3 Minimizing the Micromotion
4.4 Magnication of the Imaging System
4.5 Three-dimensional Be+ Crystals
4.6 Sympathetic Cooling
4.7 Flat Be+ Crystals and sympathetically cooled H+2 Ions
4.7.1 A two-dimensional Be+ Crystal
4.7.2 A single H+2 ion in a two-dimensional Be+ Crystal
4.7.3 Multiple H+2 Ions in a at Be+ Crystal
4.8 A three-component Crystal
4.9 A large Be+/H+2
Coulomb Crystal
5 Summary 
Appendices
A .gem-les for SIMION
A.1 .gem-le for the optimal rod size
A.2 .gem-le to estimate zeff
A.3 .gem-le for SIM(x; y; z)
References

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *