X-ray Photoelectron Spectra (XPS)

somdn_product_page

(Downloads - 0)

Catégorie :

For more info about our services contact : help@bestpfe.com

Table of contents

Remerciements
Sommaire
1. Introduction
1.1 Overview
1.2 Objectives of Ph.D. work
2. Literature review on soot emission control
2.1 Diesel exhaust emissions, environment pollution and health impact
2.2 Diesel Particulate filter (DPF)
2.2.1 DPF filtration
2.2.2 DPF regeneration
2.3 Soot structure
2.4 Catalyst materials
2.4.1 Precious metal catalysts
2.4.2 Ce-based mixed oxide catalyst
2.5 Soot oxidation reaction mechanism
3. Materials and experimental methods
3.1 List of materials
3.1.1 Materials for soot preparation
3.1.2 Materials for catalyst preparation
3.2 Physicochemical characterization
3.2.1 Brunauer-Emmett-Teller (BET)
3.2.2 Laser Granulometry
3.2.3 X-Ray Diffraction (XRD)
3.2.4 Temperature-Programmed Reduction (TPR)
3.2.4.1 H2-TPR
3.2.4.2 Soot-TPR
3.2.5 Temperature-Programmed Desorption (TPD)
3.2.5.1 NOx-TPD coupled to MS
3.2.5.2 NOx-TPD coupled to IR
3.2.6 Thermal Gravimetric Analysis (TGA)
3.2.7 Transmission Electron Microscope (TEM)
3.2.8 Raman Spectroscopy (Raman)
3.2.9 Diffuse Reflectance Infrared Fourier Transform Spectra (DRIFTS)
3.2.10 X-ray Photoelectron Spectra (XPS)
3.3 Reactivity evaluation by TPOs
3.2.1 Soot oxidation reactivity
3.3.2 NO oxidation reactivity (NO-TPO)
3.4 Isothermal experiment
4. MnOx-CeO2 mixed oxides as the catalyst for NO-assisted soot oxidation: The key role of NO adsorption/desorption on catalytic activity
4.1 Introduction
4.2 Materials preparation
4.3 Physicochemical properties
4.3.1 DRIFTS tests
4.3.2 XPS analysis
4.3.3 Raman analysis
4.3.4 TPD analysis with IR and MS
4.3.4 Soot-TPR tests coupled to MS
4.4 Soot oxidation activity
4.4.1 Soot-TPO
4.4.2 Isothermal reaction at 400 °C
4.5 Summary
5. Structure-reactivity study of model and Biodiesel soot in model DPF regeneration conditions
5.1 Introduction
5.2 Materials preparation
5.2.1 Soot samples preparation
5.2.2 Catalyst preparation
5.3 Physicochemical properties of soot
5.3.1 Laser granulometry
5.3.2 HRTEM analysis
5.3.3 XRD analysis
5.3.4 Raman spectra analysis
5.4 Soot oxidation activity analysis by TPOs
5.4.1 Non-catalytic soot oxidation
5.4.1.1 TPOs in 9% b.v. O2/Ar
5.4.1.2 TPOs in 400 ppmv NO2 + 9% b.v. O2 in Ar
5.4.2 Catalytic soot oxidation
5.4.2.1 TPOs in 9% b.v. O2/Ar
5.4.1.2 TPOs in 400 ppmv NO/NO2 + 9% b.v. O2 in Ar
5.4.3 Effect of soot-catalyst contact
5.5 Structure and reactivity correlation
5.6 Summary
6. Structure, surface and reactivity of activated carbon: From model soot to Bio Diesel soot
6.1 Introduction
6.2 Materials preparation
6.2.1 Soot samples preparation
6.2.1 Catalyst preparation
6.3 Reactivity analysis
6.3.1 TPO tests in O2
6.3.2 TPO tests in NO + O2
6.3.3 Isothermal reaction rate at 350 °C
6.4 Physicochemical properties of soot
6.4.1 Laser granulometry
6.4.2 BET analysis
6.4.3 Raman analysis
6.4.4 HRTEM analysis
6.4.5 XPS analysis
6.4.6 DRIFTS analysis
6.5 Correlation of structural and surface properties to reactivity
6.6 Summary
7. Effect of Biodiesel impurities (K, Na, P) on noncatalytic and catalytic activities of soot in model DPF regeneration conditions
7.1 Introduction
7.2 Materials preparation
7.2.1 Soot samples preparation
7.2.2 Catalyst preparation
7.3 Reactivity tests by TPOs
7.3.1 Soot oxidation under noncatalytic regeneration conditions
7.3.1.1 Soot-TPOs in 9% b.v. O2/Ar + 5% H2O
7.3.1.2 Soot-TPOs in 400 ppm NO2 + 9% b.v. O2/Ar + 5% H2O
7.3.2 Soot oxidation under catalytic regeneration conditions
7.3.2.1 Soot-TPOs in 9% b.v. O2/Ar + 5% H2O
7.3.2.2 Soot-TPOs in 400 ppm NO + 9% b.v. O2/Ar + 5% H2O
7.3.2.2 Soot-TPOs in 400 ppm NO2 + 9% b.v. O2/Ar + 5% H2O
7.4 Physicochemical properties
7.4.1 Raman analysis
7.4.2 BET analysis
7.4.3 HRTEM analysis
7.4.4 XPS analysis
7.5 Summary
8. Conclusion
Reference

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *