(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
1 Introduction
1.1 Quantum information processing (QIP)
1.2 Main requirements for QIP
Dynamical interactions
1.3 Motivation to work at the nanoscale
1.4 Thesis goals
2 High resolution and coherent spectroscopy of Eu3+:Y2O3 materials
2.1 Rare earth doped materials
2.1.1 Rare earth ions
2.1.2 The free-ion Hamiltonian
2.1.3 The crystal field
2.1.4 Intensities of rare-earth optical transitions
2.2 The host studied in this work: yttrium oxide (Y2O3 )
2.3 Eu3+:Y2O3 materials
2.4 State of the art of Eu3+:Y2O3 bulk and nanocrystals
2.5 Conclusions
3 Synthesis and Structural Characterization
3.1 Synthesis of Eu3+:Y2O3 particles
3.2 Characterization techniques
3.3 Structural characterization: Eu3+:Y(OH)CO3
3.3.1 Mechanism of particle formation
3.3.1.1 E↵ect of aging time
3.3.1.2 E↵ect of reactional temperature
3.3.1.3 E↵ect of metal concentration
3.3.1.4 E↵ect of urea concentration
3.3.1.5 E↵ect of Eu3+ concentration
3.4 Structural characterization: Eu3+:Y2O3
3.4.1 E↵ect of annealing time
3.4.2 E↵ect of annealing temperature
3.4.3 E↵ect of Eu3+ concentration
3.4.4 Crystallite size estimation of Eu3+:Y2O3 particles
3.4.4.1 Crystallite size estimation as a function of [Eu3+]
3.5 Conclusion
4 Inhomogeneous linewidths and Raman spectroscopy
4.1 Characterization Techniques
4.1.1 Optical inhomogeneous linewidth measurements
4.1.2 Raman spectroscopy measurements
4.1.3 Electron paramagnetic resonance (EPR)
4.2 Optical inhomogeneous linewidths
4.2.1 E↵ect of particle and grain sizes
4.2.2 E↵ect of annealing time for thermal treatments at 1200 !C
4.2.3 E↵ect of Eu3+ concentration
4.3 Raman spectroscopy
4.3.1 E↵ect of particle and grain sizes
4.3.2 E↵ect of Eu3+ concentration
4.4 Electron Paramagnetic Resonance (EPR)
4.5 Conclusion
5 Emission spectroscopy
5.1 Characterization Techniques
5.2 Fluorescence spectroscopy
5.2.1 Emission spectra under excitation of the 7F0!5D2 transition
5.2.2 Emission spectra under excitation of the 7F0!5D0 transition
5.2.3 Emission spectra of Eu3+:Y2O3 single particle under excitation at 7F0 ! 5D1
5.2.4 Emission spectra under excitation in the ultraviolet .
5.3 Excited state lifetimes
5.3.1 Decay lifetimes of the 5D0 excited level
5.3.2 Decay lifetimes of the 5D2 excited level
5.3.3 Nd3+:Y2O3 particles
5.4 Conclusions
6 Homogeneous linewidths and spectral hole lifetimes
6.1 Experimental setup
6.1.1 Photon echo sequences
6.1.2 Two-pulse photon echoes (2PPE)
6.1.3 Three-pulse photon echo (3PPE)
6.1.4 Hole burning experiments
6.1.4.1 Measurements on Eu3+:Y2O3 particle ensemble
6.1.4.2 Measurements on small aggregates of Eu3+:Y2O3 particles
6.2 Spectroscopy of 0.5 % Eu3+:Y2O3 sample
6.2.1 0.5 % Eu3+:Y2O3 sample
6.2.2 Two-pulse photon echo
6.2.3 Temperature dependence
6.2.4 Three-pulse photon echo
6.2.5 Holeburning
6.2.6 Hole burning on small Eu3+:Y2O3 aggregates
6.3 E↵ect of material parameters
6.3.1 Particle size
6.3.2 Calcination temperature
6.3.3 Time of annealing
6.4 Conclusion
7 General conclusion




