Microorganisms socialize/cooperate

somdn_product_page

(Downloads - 0)

Catégorie :

For more info about our services contact : help@bestpfe.com

Table of contents

1 Evolutionary game theory for the evolution of cooperation in microbes 
1.1 The intimidating field of social evolution
1.1.1 Sociality/cooperation is puzzling for the evolutionary biologist
1.1.2 A scientific shift in the current approach
1.2 Sociality and cooperation in microbes
1.2.1 Microorganisms are good systems to test evolutionary hypotheses
1.2.2 Sociality and cooperation are pervasive in microbes
1.2.3 The tragedy of the commons in microbes
1.2.4 The chicken-and-egg of cooperation and sociality
1.3 Solving the paradox of cooperation
1.3.1 Reciprocity
1.3.2 Policing (reward / punishment)
1.3.3 Interactions directed toward genealogical kin
1.3.4 Assortment between cooperators
1.3.5 Direct benefits
1.3.6 Game definition
1.4 Game structure
1.4.1 Dyadic games
1.4.2 N-player games
1.4.3 The difficulty finding the right game
1.5 Population structure
1.5.1 Lattices
1.5.2 Graphs
1.5.3 Continuous space
1.6 Group structure
1.6.1 Groups as equivalence classes
1.6.2 Groups as sets
1.6.3 Non-delimited groups
1.7 Outline
2 Group formation and the evolution of sociality 
2.1 Introduction
2.2 General formulation
2.2.1 Hypotheses
2.2.2 Payoff difference for a general aggregation process
2.2.3 Payoff difference: case of no assortment a priori
2.3 Group formation by differential attachment
2.3.1 Description of the toy model
2.3.2 Group size distributions and payoff difference
2.3.3 Evolutionary dynamics and effect of the parameters
2.3.4 Other rules for group formation
2.4 Decoupling cooperation and attachment
2.4.1 Hypotheses
2.4.2 Evolutionary outcome
2.4.3 Conclusion
2.5 Extension to a continuous trait
2.5.1 Changes in the model
2.5.2 Resident / mutant analysis
2.5.3 Application to an aggregation process
2.5.4 Condition for altruism
2.6 Discussion
2.6.1 Social groups formation and evolution
2.6.2 Aggregative sociality in microorganisms
2.6.3 Nonnepotistic greenbeards?
2.6.4 About altruism and direct benefits
2.6.5 Toward a re-evaluation of the group formation step
3 Differential adhesion between moving particles for the evolution of social groups
3.1 Introduction
3.1.1 Main issue
3.1.2 Outline
3.2 Model
3.2.1 Aggregation model
3.2.2 Social dilemma
3.2.3 Evolutionary algorithm
3.3 Results
3.3.1 Local differences in adhesion rule group formation and spatial assortment in the aggregation phase
3.3.2 Assortment and differential volatility between strategies drive the evolution of sociality
3.3.3 Parameters of motion and interaction condition the evolution of sociality
3.4 Discussion
3.4.1 Evolution of sociality via differential adhesion
3.4.2 Strategy assortment and differential volatility
3.4.3 Role of group formation
3.4.4 Conclusion
3.5 Effect of ecological vs. evolutionary time scale
3.5.1 Hypotheses
3.5.2 Evolutionary trajectories
3.5.3 Effect of the generation time
3.5.4 Conclusion: role of time scales
4 Conclusion 
4.1 Main results
4.2 Perspectives for future work
Appendix A Derivation of the payoff difference, general case
Appendix B Group size distributions for differential attachment
Appendix C Condition for sociality to be altruistic for differential attachment
Appendix D Evolutionary algorithm for chapter 3

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *