Different ways of considering time in LCA of buildings

somdn_product_page

(Downloads - 0)

For more info about our services contact : help@bestpfe.com

Table of contents

Chapter 1 Introduction
1.1 Context of the thesis work
1.2 Problem statement
1.2.1 Temporal evolution of a building system
1.2.2 Process and supply dynamics through technological and environmental flows
1.2.3 Time-dependent impacts
1.3 Research questions and thesis outline
Chapter 2 Development of modeling and simulation platform of a dynamic LCA methodology applied to buildings
2.1 Introduction
2.2 Literature review
2.2.1 Time-dependent factors and parameters of a building system
2.2.2 Time-related aspects in conventional LCA
2.2.3 Tools for LCA of buildings and their limitations
2.2.4 Different ways of considering time in LCA of buildings
2.2.5 Existent operational tools for dynamic LCA
2.3 Presentation of the new approach
2.3.1 General trends from state of the art
2.3.2 Identification of key dynamic aspects
2.3.3 Proposed methodology for dynamic LCA of buildings
2.3.4 Dynamic methods for climate change impacts assessment
2.4 Conclusion
Chapter 3 Collection of time-varying building parameters and prospective scenario for dynamic LCI calculation
3.1 Introduction
3.2 Classification of the building dynamic parameters
3.2.1 Foreground and background system
3.2.2 Physical scale of time-varying building parameters
3.2.3 Integration of time-varying building parameters into LCI calculation
3.2.4 Type of data collection
3.3 Time-varying parameters of building systems
3.3.1 Insulation material degradation
3.3.2 Recycling content materials/recycling process inputs and outputs
3.3.3 Future French energy mix
3.4 Temporal parameters of production and supply chain dynamics
3.5 Conclusion
Chapter 4 Climate change pathways with different applications of dynamic LCA: Case study – French low-energy single houses
4.1 Introduction
4.2 Preliminary LCA of the test bed building using ELODIE software
4.3 Dynamic LCI and LCIA
4.3.1 General methodology of DLCA
4.3.2 Dynamic LCI modeling
4.3.3 Conventional and dynamic approaches for climate change impact
4.4 Prospective scenarios
4.4.1 Degradation of materials and energy system functioning
4.4.2 Technological progress
4.4.3 Change in family size
4.4.4 Evolution of the French electricity mix
4.4.5 Summary of temporal parameters and scenarios
4.5 Results and discussion
4.5.1 Results for the entire building
4.5.2 Contribution of construction products
4.5.3 Application to building scenarios
4.6 Conclusion
Chapter 5 Orientations for DLCA users
5.1 Introduction
5.2 Dynamic LCA for buildings and construction products design
5.2.1 Role of the building sector within the global warming target
5.2.2 Identification of mitigation actions for impact contributors
5.2.3 New metrics and analysis at the building scale
5.2.4 Prospective scenario analysis by dynamic LCA
5.3 Dynamic LCA for building actors and regulation
5.3.1 Emission profile analysis
5.3.2 Carbon dioxide removal (CDR) by the building sector
5.4 Conclusion
Chapter 6 Conclusions and perspectives
6.1 Conclusions
6.2 Perspectives
Reference

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *