The biorefinery : a deconstruction game

somdn_product_page

(Downloads - 0)

Catégorie :

For more info about our services contact : help@bestpfe.com

Table of contents

A. LITERATURE REVIEW
I. Lignocellulosic biomass
1. Definition
2. Global composition
3. Multi-scale organization of lignocellulosic biomass
3.1. Macroscopic structure of biomass
3.2. Microscopic scale: Porous structure
3.3. Biomacromolecules properties
3.3.1. Cellulose
3.3.2. Hemicellulose
3.3.3. Lignin
3.4. Extractives
II. The biorefinery: a deconstruction game
1. Biorefinery classification
2. Biomass pretreatment and fractionation
2.1. Mechanical pretreatment
2.2. Pulping pretreatments
2.3. Conclusion
3. Thermochemical depolymerization of cellulose
3.1. Hydrothermal liquefaction of cellulosic materials
3.1.1. Concept
3.1.2. Effect of hydrolysis conditions on product distribution
3.1.3. Reactors and processes
3.2. Pyrolysis of cellulose
3.3. Conclusion
4. Biological conversion of cellulosic materials
4.1. Brief history of fermentation
4.2. Current definition of fermentation
4.3. ABE Fermentation process
4.4. Clostridial species
4.5. Clostridium acetobutylicum
4.5.1. Metabolism
4.5.2. Growth requirements
4.5.3. Inhibition
4.6. Conclusion
III. Combining thermochemical and biological conversion of biomass
1. Existing concepts
2. Proposed concept in this PhD
IV. References
B. RESULTS
I. Hydrothermal conversion of cellulosic materials
1. Article 1: Decomposition of cellulose in hot-compressed water: detailed analysis of the products and effect of operating conditions
1.1. Introduction
1.2. Materials and Methods
1.2.1. Reactants
1.2.2. Liquefaction in hot-compressed water
1.2.3. Analysis of the crystalline structure of solid residues by XRD
1.2.4. Soluble products analysis
1.2.5. Permanent gas analysis
1.3. Results and Discussion
1.3.1. Mass balance
1.3.2. XRD of the solid residues
1.3.3. Characterization of liquids
1.3.4. Permanent gas composition
1.3.5. Mechanism of cellulose conversion in HCW
1.4. Conclusion
1.5. References
2. Article 2: Production of soluble sugars: Coupling of fractionation and hydrothermal depolymerization of woody biomass
2.1. Introduction
2.2. Materials and Methods
2.2.1. Biomass and reactants
2.2.2. Biomass delignification
2.2.3. Liquefaction in HCW
2.2.4. Chemical analysis
2.3. Results and discussion
2.3.1. Biomass fractionation
2.3.2. Liquefaction of the beech-extracted pulp in HCW
2.4. Conclusion
2.5. References
II. Biological conversion of cellulose-derived products
1. Article 3: Diauxic growth of Clostridium acetobutylicum ATCC 824 when grown on mixtures of glucose and cellobiose
1.1. Introduction
1.2. Materials and Methods
1.2.1. Microorganism and media
1.2.2. Fermentation
1.2.3. Analyses
1.2.4. Calculations
1.3. Results
1.3.1. General growth and metabolic features of Clostridium acetobutylicum ATCC 824 cultivated with glucose or cellobiose
1.3.2. Fermentation of glucose and cellobiose mixtures by C. acetobutylicum
1.4. Discussion
1.5. References
2. Article 4: From wood to building blocks: ABE fermentation of carbohydrates produced by hydrothermal depolymerization of wood pulps
2.1. Introduction
2.2. Materials and Methods
2.2.1. Substrate preparation
2.2.2. Fermentation
2.2.3. Analysis
2.3. Results and discussion
2.3.1. Fractionation and hydrolysis of beech wood
2.3.2. Fermentation of a cellulose-derived mixture of sugars
2.3.3. Fermentation of cellulose hydrolysates
2.3.4. Fermentation of hydrolysates from delignified beech
2.4. Conclusion
2.5. References
III. Integration of thermochemical and biochemical processes
1. Article 5: Process integration modeling for a wood biorefinery: Pulping, Liquefaction and Fermentation to produce Building Blocks
1.1. Introduction
1.2. Presentation of the Aspen Plus® model
1.2.1. Overview of the process
1.2.2. Definition of compounds
1.2.3. Process modeling
1.3. Results and discussion
1.3.1. Mass balances
1.3.2. Energy balances
1.4. Conclusion
C. CONCLUSIONS AND PERSPECTIVES
D. APPENDICES
I. Appendice 1: Article 6 (in development): Hydrothermal conversion of cellulose-rich pulps in a fixed-bed reactor. Performed at Curtin University in Perth, Australia
II. Appendice 2: Article 7 (in development): Fast pyrolysis of cellulose with a stage condensation system for the recovery of bio-oil fractions
III. Appendice 3: Fast pyrolysis of cellulosic materias performed in a micro-fluidized bed reactor coupled to SPI-TOF MS
IV. Appendice 4: Main metabolic pathways of cellobiose utilization by C. acetobutylicum
V. Appendices 5: Effect of the pH on the acidogenic phase of C. acetobutylicum when grown on glucose or cellobiose in a batch bioreactor
E. RESUMÉ DE LA THESE EN FRANÇAIS
I. Objectif
II. Bibliographie

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *