(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
CHAPTER ONE: STATE OF THE ART
I.1. Introduction
I.2. Ionic Liquids
I.3. History and progress of ionic liquids
I.4. Classes of ionic liquids
I.5. Physico-chemical properties of Ionic liquids
I.5.1. vapor pressure
I.5.2. Activity coefficient for ionic liquids
I.5.3. Density
I.5.4. Viscosity
I.5.5. Surface tension
I.5.6. Miscibility with water
I.5.7. Melting point
I.5.8. Thermal stability
I.5.9. Flammability and corrosion
I.5.10. Toxicity and human health
I.6. Potential Applications of Ionic Liquids
I.7. General information about Absorption cycles
I.8. Classification of Absorption cycles
I.8.1. Absorption refrigerators (Chillers) (AC)
I.8.2. Absorption heat pumps (AHP)
I.8.3. Absorption heat transformers (AHT)
I.9. Working fluids containing {water + ILs} for absorption cycles
I.9.1. {H2O + Ionic liquids} binary systems in literature
I.10. Thermodynamic properties of {H2O + IL}
I.10.1. Thermodynamic model for the representation of binary system {H2O + IL}
I.10.2. Experimental thermodynamic data of {H2O + IL}
I.10.2.1. Vapor liquid equilibrium (VLE)
I.10.2.2. Heat capacity
I.10.2.3. Excess Enthalpy (HE)
I.10.2.4. Density
I.10.2.5. Viscosity
I.10.2.6. Thermal decomposition
References
CHAPTER TWO: THERMODYNAMIC OF BINARY SYSTEMS COMPOSED OF {WATER + IONIC LIQUID}
II.1. Experimental section
II.1.1. Materials
II.1.2. Vapor Liquid Equilibrium (VLE)
II.1.2.1. Isobaric VLE apparatus
II.1.2.2. Isothermal VLE measurement
II.1.3. Heat capacity (Cp)
II.1.4. Density (ρ)
II.1.5. Excess enthalpy (HE)
II.2. Results and discussion
II.2.1. Vapor Liquid Equilibrium (VLE)
II.2.2. Heat capacity (Cp)
II.2.3. Density (ρ)
II.2.3.1. Excess molar volume VE
II.2.4. Excess molar Enthalpy (HE)
CHAPTER THREE: PERFORMANCE SIMULATION (COP)
III.1. Simulation of the AHT cycle performance
III.2. COP definition for an Absorption refrigeration cycle
III.3.Absorption heat transformer
References




