(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
1 Introduction
1.1 What do we know about the Universe?
1.2 The frontier – reionization and end of the dark ages
1.3 An upcoming peek into the dark ages
1.4 Cosmological simulations: A complementary tool for the exploration of the Universe
1.5 This PhD thesis: A tool for understanding the early evolution of galaxies
2 On the theory of ionizing radiative transfer in cosmological simulations
2.1 Radiation-hydrodynamics in a cosmological context
2.1.1 Cosmological hydrodynamics
2.1.2 The equation of radiative transfer
2.1.3 The RHD equations
2.1.4 Main challenges of numerical RT and RHD
2.2 Ray-tracing schemes
2.3 Moment-based radiative transfer
2.3.1 Moments of the RT equation
2.3.2 Closing the moment equations
2.4 From Aton to RamsesRT
2.5 One more RHD implementation?
3 Radiation-hydrodynamics with RamsesRT
3.1 Multigroup H+He ionizing radiative transfer
3.2 Solving the RT equations on a grid
3.2.1 (a) Photon transport step
3.2.2 (b) Photon injection step
3.2.3 (c) Thermochemistry step
3.2.4 The RT time-step and the reduced speed of light
3.2.5 Smooth RT
3.3 Cosmological settings
3.4 Putting the RT into RamsesRT
3.4.1 The AMR structure of Ramses
3.4.2 Radiative transfer post-processing
3.4.3 Radiation hydrodynamics
3.5 Thermochemistry
3.5.1 Ramses equilibrium thermochemistry – what’s already there
3.5.2 RamsesRT non-equilibrium thermochemistry
3.5.3 Thermochemistry performance and prospectives
3.6 Stellar UV emission and photon package properties
4 Code tests
4.1 Introduction
4.2 Thermochemistry tests
4.2.1 Ionization convergence at constant temperature and zero ionizing photon flux
4.2.2 Ionization convergence at constant temperature and nonzero ionizing photon flux
4.2.3 Temperature convergence with zero ionizing photon flux
4.2.4 Temperature convergence with nonzero ionizing photon flux
4.2.5 Thermochemistry tests conclusions
4.3 The benchmark RT tests
4.3.1 Il06 test 0: The basic thermochemistry physics
4.3.2 Il06 test 1: Pure hydrogen isothermal Hii region expansion
4.3.3 Il06 test 2: Hii region expansion and the temperature state
4.3.4 Il06 test 3: I-front trapping in a dense clump and the formation of a shadow
4.3.5 Il06 test 4: Multiple sources in a cosmological density field
4.3.6 Il09 test 5: Classical Hii region expansion
4.3.7 Il09 test 6: Hii region expansion in a r−2 density profile
4.3.8 Il09 test 7: Photo-evaporation of a dense clump
4.3.9 Benchmark test conclusions
5 Extended Lyα emission from cold accretion streas
5.1 The paper
5.2 Notes on extended Lyα emission
5.2.1 Resolution convergence
5.2.2 Light speed convergence
5.2.3 UV emission density threshold convergence
5.2.4 Operator splitting and underestimated Lyα emissivities
5.2.5 Does a simple self-shielding approximation suffice?
5.2.6 Are disrupted streams a numerical effect of over-resolved gravity?
5.2.7 Smooth vs non-smooth RT
6 Conclusions and outlook


