Human gait cycle description

somdn_product_page

(Downloads - 0)

Catégorie :

For more info about our services contact : help@bestpfe.com

Table of contents

1 Introduction 
2 Diagnosis of Parkinson’s Disease 
2.1 Introduction
2.2 Parkinson’s Disease
2.3 Diagnosis of Parkinson’s Disease
2.4 Human gait analysis and gait cycle phases description
2.4.1 Human gait analysis
2.4.2 Human gait cycle description
2.5 Gait cycle of Parkinsonian subjects
2.6 Gait assessment techniques
2.6.1 Semi-subjective techniques
2.6.2 Objective techniques of gait analysis
2.6.2.1 Non-Wearable sensors
2.6.2.2 Wearable sensors
2.7 Positioning of the thesis
3 Data-driven approach to aid Parkinson’s disease diagnosis 
3.1 Introduction
3.2 General background
3.2.1 Pre-processing
3.2.1.1 Features computation
3.2.1.2 Features Selection
3.2.1.3 Features Extraction
3.2.2 Classication Techniques
3.2.3 Performance evaluation
3.2.3.1 Generalization performance
3.2.3.2 Classier performance evaluation
3.3 Related works
3.4 Parkinson’s disease classication
3.4.1 Dataset Description
3.4.2 Data preprocessing
3.4.3 Results of feature extraction process
3.5 Results and Discussion
3.5.1 Parameters settings
3.5.1.1 Supervised methods
3.5.1.2 Unsupervised methods
3.5.2 Parkinson’s disease classication results
3.5.2.1 Results of feature selection process
3.5.2.2 Classication results
3.6 Conclusion
4 CDTW-based classication for Parkinson’s Disease diagnosis 
4.1 Introduction
4.2 Time series similarity measures
4.3 Dynamic Time Warping (DTW)
4.3.1 Dynamic Time Warping (DTW) formulation
4.3.2 Continuous Dynamic Time Warping (CDTW) formulation
4.4 Gait cycle similarity evaluation using Dynamic Time Warping (DTW)
4.5 Data pre-processing for PD classication
4.5.1 Features extraction
4.5.2 Features selection
4.6 Results and discussion
4.6.1 PD classication using CDTW-based features
4.6.2 PD classication based on feature selection
4.7 Conclusion
5 Multidimensional CDTW-based classication for Parkinson’s Disease diagnosis 
5.1 Introduction
5.2 Multidimensional CDTW formulation
5.3 PD subjects classication using multidimensional CDTW-based features
5.3.1 Parameter settings
5.3.2 Results and discussion
5.4 Conclusion
6 Conclusion and Perspectives 
6.1 Conclusion
6.2 Perspectives

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *