ACES payload and requirements

somdn_product_page

(Downloads - 0)

Catégorie :

For more info about our services contact : help@bestpfe.com

Table of contents

1 Introduction 
2 Atomic clocks 
2.1 Principle and performances
2.1.1 Clock accuracy
2.1.2 Clock stability
2.1.3 Clock development
2.1.3.1 Selection of cesium and alternatives
2.2 Atomic fountain – primary frequency standard
2.2.1 Cesium atomic fountain operation
2.2.1.1 Atom cooling (Doppler and sub-Doppler cooling) and the launch
2.2.1.2 Ramsey interrogation
2.3 Perspective and other clocks
3 ACES mission 
3.1 International Space Station
3.1.1 Orbit and environments
3.1.2 Instrument positions
3.1.3 Vehicle support
3.2 ACES payload and requirements
3.2.1 SHM
3.2.2 PHARAO
3.2.2.1 Operation
3.2.3 Signal merging and data handling
3.2.4 Operation modes
3.2.5 Time and frequency transfer: MWL and ELT
3.3 Scientific objectives
3.3.1 Fundamental physics
3.3.1.1 Gravitational red-shift
3.3.1.2 Drift of fine structure constant
3.3.1.3 Anisotropy of light
3.3.2 Geodesic application
3.3.3 International Atomic Time contribution
4 PHARAO 
4.1 PHARAO architecture
4.2 PHARAO development
4.3 Microwave source
4.3.1 Microwave synthesis chain
4.4 Laser source
4.4.1 Optical bench layout
4.4.1.1 ECDL
4.4.1.2 ECDL output
4.5 Electronic control system
4.6 Cesium tube and operation
4.6.1 Atom capture
4.6.2 Atom cooling
4.6.3 Preparation and selection
4.6.4 Interrogation
4.6.5 Detection
4.6.6 Magnetic shields
4.6.7 Experimental ground operation
4.6.7.1 Experimental setup
4.6.7.2 Initial starting, optimization an results of the clock
5 PHARAO frequency stability 
5.1 Sources of noise in PHARAO
5.1.1 Quantum projection
5.1.2 Detection system noise
5.1.3 Detection laser noise
5.1.4 Local oscillator noise – Dick effect
5.1.5 Micro-vibration effect
5.2 Experimental results and discussion
6 PHARAO frequency accuracy: preliminary evaluation on the FM 
6.1 Second order Zeeman effect
6.1.1 Flight model shields characterization with a magnetic probe
6.1.1.1 Shield architecture
6.1.1.2 Shield characterization experimental setup
6.1.1.3 The external B3 shield
6.1.1.4 Individual B2 and B1 shields
6.1.1.5 Shield combinations B1+B2, B2+B3 and B1+B2+B3 .
6.1.1.6 Magnetic field homogeneity
6.1.1.7 Space qualification of the shield
6.1.2 Magnetic results of the flight model by using cold atoms
6.1.2.1 Axial and transverse field attenuation
6.1.2.2 Magnetic field evaluation
6.1.2.3 Conclusion to FM shield experiments
6.1.3 Active compensation
6.1.3.1 Introduction
6.1.3.2 Experiment
6.1.3.3 Model description
6.1.3.4 Postulate I
6.1.3.5 Postulate II
6.1.3.6 Postulate III
6.1.3.7 Active compensation system
6.1.3.8 Experimental setup
6.1.3.9 Axial external field pattern and results
6.1.3.10 Orbital external field testing
6.1.3.11 Axial results
6.1.3.12 Degradation of results for the total field and the tracking procedure
6.1.3.13 Shield attenuation as a function of external field amplitude and demagnetization
6.1.4 Conclusion to Zeeman shift
6.2 Black body radiation
6.2.1 Introduction
6.2.2 PHARAO thermal architecture, development and temperature uncertainty
6.2.2.1 STM experimental results and modelization
6.2.2.2 FM modelization
6.2.2.3 FM experimental results
6.2.2.4 Measurement uncertainties
6.2.3 Conclusion to black body
6.3 Cold collision
6.3.1 Introduction
6.3.2 Collision frequency simulation
6.4 Doppler effect (DCP)
6.5 Conclusion to systematic effects
7 Conclusion 
8 Appendix 1 
8.1 Ramsey interrogation
8.1.1 Classical representation
8.1.2 Quantum physical interpretation of interference
8.1.3 Semiclassical representation
8.1.3.1 Single oscillatory field – Rabi magnetic resonance method225
8.1.3.2 Double oscillatory field – Ramsey magnetic resonance method
8.1.4 Fictitious spin representation
9 Appendix 2 
9.1 Sub-Doppler
10 Appendix 3 
Bibliography

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *