Numerical modeling of seawater intrusion

somdn_product_page

(Downloads - 0)

For more info about our services contact : help@bestpfe.com

Table of contents

Chapter I: Introduction
1.1. Overview
1.2. Seawater Intrusion in coastal aquifers
1.2.1 An overview of Chapter II: A Generalized Semi-Analytical Solution for the Dispersive Henry Problem
1.2.2. An overview of Chapter III: Semi-analytical solution of contaminant transport in coastal aquifers
1.2.3. An overview of Chapter IV: Uncertainty analysis for seawater intrusion in fractured coastal aquifers: application to Clashnessie Bay, UK
1.3. Variably saturated flow in fractured domains: Application to El Assal aquifer in Lebanon
Chapitre I : Introduction
1.1. Prolégomènes
1.2. Intrusion d’eau de mer dans les aquifères côtiers
1.2.1 Aperçu du chapitre II : solution semi-analytique généralisée au problème de dispersion de Henry
1.2.2. Aperçu du chapitre III : solution semi-analytique du transport de contaminants dans les aquifères côtiers
1.2.3. Aperçu du chapitre IV : analyse d’incertitudes pour l’intrusion d’eau de mer dans les aquifères côtiers fracturés : application à la baie de Clashnessie, Royaume-Uni
1.3. Ecoulements variablement saturés dans les domaines fracturés : application à l’aquifère d’El Assal au Liban
Chapter II: Dispersive Henry problem: a generalization of the semianalytical solution to anisotropic and layered coastal aquifers
2.1. Introduction
2.2. The mathematical model and boundary conditions
2.3. Semianalytical solution
2.4. New technique for solving the equations in the spectral space
2.5. Results and discussions
2.5.1. Verification: Stability of the Fourier series solution and comparison against numerical solution
2.5.2. Effect of anisotropy on seawater intrusion in homogenous aquifer
2.5.3. Coupled effect of anisotropy and stratified heterogeneity on seawater intrusion
2.6. Conclusion
Chapter III: Semi-analytical solutions for contaminant transport under variable velocity field in a coastal aquifer
3.1. Introduction
3.2. Problem description and methodology
3.3. Governing Equations
3.4. The semi-analytical solution
3.4.1. Adaptation of the FG method
3.4.2. Implementation
3.5. Evaluation of the contaminant transport characteristics
3.6. Results: test examples, verification and comparison against numerical solution
3.6.1. Stability of the semi-analytical solution and effect of Péclet number
3.6.2. Comparison against numerical solution: verification, efficiency of the FG implementation and benchmarking issues
3.7. Effect of seawater intrusion on contaminant transport
3.8. Conclusion
Chapter IV: Uncertainty analysis for seawater intrusion in fractured coastal aquifers: Effects of fracture location, aperture, density and hydrodynamic parameters
4.1. Introduction
4.2. Material and methods
4.2.1. Conceptual model: Fractured Henry Problem
4.2.2. DFMM-VDF mathematical model:
4.2.3. DFMM-VDF finite element model: COMSOL Multiphysics®:
4.2.4. Metrics Design:
4.3. Global sensitivity analysis
4.3.1. Sobol’ indices
4.3.2. Polynomials Chaos Expansion (PCE)
4.3.3. Sparse polynomial chaos expansion
4.4. Validations: COMSOL model and Boussinesq approximation
4.5. Global sensitivity Analysis: results and discussion
4.5.1. The single horizontal fracture configuration (SHF)
4.5.2. The network of orthogonal fractures configuration (NOF)
4.6. Conclusion
4.7. Field case study: Application to Clashnessie Bay, UK
Chapter V: An advanced discrete fracture model for variably saturated flow in fractured porous media
5.2. Governing Equations of VSF in fractured domains
5.3. Numerical solution: MHFE method, ML technique, and MOL
5.3.1. Trial functions of the MHFE method for the matrix and fractures
5.3.2. Flux discretization in the matrix elements (MHFE method and ML technique)
5.3.3. Flux discretization for a fracture element
5.3.4. Hybridization: mass conservation on edges
5.3.5. The new ML technique for fractures
5.3.6. High-order adaptive time integration
5.4. Results: Verification and advantages of the new developed numerical scheme
5.4.1. Verifications: Fractured Vauclin test case
5.4.2. Advantages of the ML technique for fractures
5.5. Results: Field Scale Applications
5.5.1. Objectives and overall presentation of the site
5.5.2. Methodology for simulation and analysis
5.5.3. Simulations with real data from 2013 to 2019
5.5.4. Predictions under climate change from 2019 to 2099
5.6. Conclusion
Chapter VI: Conclusion and perspectives
6.1. General conclusion
6.2. Perspective
Chapitre VI : Conclusion et perspectives
6.1. Conclusion générale
6.2. Perspectives
References

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *