(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
1.1 Introduction
1.2 The possible origin scenarios for the Moon
1.3 The geochemical constraints
1.4 The dynamical constraint from the lunar orbital evolution
1.4.1 The lunar orbital evolution
1.4.2 The high mutual inclination and the initial total angular momentum
1.4.3 Summary
1.5 The giant impact theory
1.5.1 Material injection mechanism
1.5.2 The canonical impact model
1.5.3 The high-angular momentum impact model
1.5.4 Summary
1.6 The behaviour of iron during giant impacts
1.7 The role of equations of state
1.8 The phase diagram of iron
1.9 Proposed research
2.1 Introduction
2.2 Deriving classical molecular dynamics
2.2.1 The large band gap system
2.2.2 The small band gap and metallic system
2.2.3 Summary
2.3 Finite-temperature density functional theory
2.3.1 Finite-temperature canonical-ensemble theory
2.3.2 Kohn-Sham formulation
2.4 Ab initio spin dynamics
2.4.1 Spin-polarized DFT at zero temperature
2.4.2 Spin dynamics at high temperature
2.4.3 Approximate paramagnetism by either non-magnetism or ferromagnetism?
3.1 Introduction
3.2 Simulation details
3.2.1 Ab initio molecular dynamics
3.2.2 Construction of the spinodal line
3.2.3 Structural analysis
3.2.4 The mean-square displacements
3.2.5 Velocity autocorrelation function
3.2.6 Entropy calculations
3.2.7 Viscosity
3.2.8 Electrical and thermal conductivity
3.3 Results and discussion
3.3.1 The critical point
3.3.2 Static structure
3.3.3 Speciation
3.3.4 Velocity autocorrelation function
3.3.5 Diffusion
3.3.6 Viscosity
3.3.7 Electrical and thermal conductivity
3.3.8 Hugoniot lines
3.3.9 Vaporization of small planetesimals
3.3.10 Vaporization during giant impacts
3.4 Conclusions




