Influence of SEI on the electrochemical performances of LIBs

somdn_product_page

(Downloads - 0)

Catégorie :

For more info about our services contact : help@bestpfe.com

Table of contents

Abstract
Chapter 1. State of the art and objectives
1 Lithium-ion batteries (LIBs)
1.1 Principle of LIBs
1.2 Structure of LIBs
1.3 Reversible energy storage mechanisms in LIBs
2 Surface and interface science in LIBs – SEI layer
2.1 Formation of SEI layer – mechanism and features
2.2 Variation of SEI layer – influential factors
2.3 Characterization of SEI layer – research methods and techniques
3 Iron oxide for LiBs – state of the art
3.1 Structure and electrochemical performance of hematite (α-Fe2O3).
3.2 Nanostructured iron oxide
3.3 Thin-film iron oxide
3.4 Scientific issues of iron oxide in LIBs
4 Objectives of this work
5 Contents of the thesis
References
Chapter 2. Combined surface and electrochemical study of the lithiation/delithiation mechanism of iron oxide thin film anode for lithium-ion batteries
1 Introduction
2 Experimental section
2.1 Preparation of iron oxide thin films
2.2 Electrochemical measurements
2.3 X-ray photoelectron spectroscopy (XPS)
2.4 Time-of-flight secondary ion mass spectrometry (ToF-SIMS)
3 Results and discussion
3.1 Raman phase identification
3.2 Electrochemical properties of iron oxide by cyclic voltammetry and electrochemical impedance spectroscopy
3.3 Modification of iron oxide thin film upon the first lithiation/delithiation shown by XPS
3.4 XPS depth profile analysis of sample lithiated at 0.01 V
3.5 ToF-SIMS depth profiles analysis of pristine, lithiated and delithiated samples
4 Conclusions
Chapter 3. Aging-induced chemical and morphological modifications of thin film iron oxide electrodes for lithium-ion batteries
1 Introduction
2 Experimental methods
3 Results and discussion
3.1 Galvanostatic cycling
3.2 First 15 cyclic voltammograms of the iron oxide thin-film electrode.
3.3 Surface chemistry upon cycling studied by XPS
3.4 Surface and bulk modifications analyzed by ToF-SIMS
3.5 Morphology modifications studied by SEM and AFM
4 Conclusions
Supporting Information for Chapter 3
References
Chapter 4. Kinetics evaluation of thin film α-Fe2O3 negative electrode for lithium-ion batteries
1 Introduction
2 Experimental methods
3 Results and discussion
3.1 Structure and composition
3.2 Diffusion evaluation from cyclic voltammetry
3.3 Galvanostatic discharge-charge
3.4 Diffusion evaluation from EIS
3.5 Diffusion evaluation from ToF-SIMS
3.6 Influence of surface modifications of the iron oxide on kinetics
4 Conclusions
References
Chapter 5. Binary (Fe, Cr)-oxide thermally grown on stainless steel current collector as anode material for lithium-ion batteries
1 Introduction
2 Experimental methods
2.1 Preparation of (Fe, Cr)-binary oxide thin films
2.2 Electrochemical measurements
2.3 Spectroscopic analysis
2.4 Microscopic characterization
3 Results and discussion
3.1 Composition and phases
3.2 Conversion mechanism of binary oxide showed by cyclic voltammetry
3.3 Cycling performance by galvanostatic discharge/charge
3.4 XPS analysis upon cycling
3.5 ToF-SIMS depth profiling
3.6 SEM characterization
3.7 AFM characterization
4 Conclusions
Chapter 6. Conclusions and perspectives
1. Conclusions
2. Perspectives
Appendix 1
1. Sample preparation.
1.1 Mechanical polishing
1.2 Thermal oxidation
2. Electrochemical measurements
2.1 Cyclic voltammetry (CV)
2.2 Electrochemical impedance spectroscopy (EIS)
2.3 Galvanostatic charge-discharge
3. X-ray photoelectron spectroscopy (XPS)
3.1 Principles
3.2 Instrument
4. Time-of-flight secondary ion mass spectrometry (ToF-SIMS)
4.1 Principles
4.2 Instrument
5. Scanning electron microscopy (SEM)
5.1 Principles
5.2 Instrument
6. Atomic force microscopy (AFM)
6.1 Principles
6.2 Instrument
7. Raman spectroscopy
7.1 Principles
7.2 Instrument
References
Appendix 2
1. ALD iron oxide nanomaterial for LIBs
2. Fe-Air batteries
References
Notation
List of publications
Acknowledgements

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *